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Abstract

Bishop style constructive integration theory constitutes an important mile-
stone in constructive mathematics as it demonstrates the actual feasibility
of developing a rich theory of integration within the constructive framework.
However, Bishop’s approach has the fundamental flaw that it allows impred-
icativity in the sense that it uses statements that contain quantification over
the whole universe of sets. In this thesis, I work towards amending Bishop’s
theory in order to remove this impredicativity. Furthermore, I try to increase
clarity through the explicit use of moduli. First, I introduce the necessary
fundamental notions of Bishop Set Theory as presented by Petrakis. Following
Bishop’s book, I develop the theory of locally compact metric spaces. Lastly,
I introduce a notion of integration on locally compact metric spaces and
prove that the set of partial functions with compact support constitute an
integration space in a sensible manner.
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Introduction

The vast majority of contemporary mathematics is based on classical math-
ematics (CLASS). The reason for this is that CLASS does one thing very
well: It gets the job done. It manages to provide easy-to-use tools to describe
highly abstract concepts and therefore caters to the needs of the common
mathematician who wants to focus on their respective work rather than the
low-level details. Unfortunately, in CLASS those low-level details are rather
problematic, as its largest selling point is at the same time also its fundamental
flaw: The law of the excluded middle (LEM). At the very center of CLASS,
LEM is the axiom that for every statement 𝐴 it is true that

𝐴 ∨ ¬𝐴

or in other words that a statement is either true or false. It is due to this
seemingly intuitive assumption that CLASS has lost most of its computational
meaning. CLASS allows us to make statements about objects that are
inherently inconstructible and what is more, it allows for the unnecessary
introduction of non-constructivist methods when an equally valid constructive
method would be available.

In the very first chapter, Bishop and Bridges [1] provide a good example that
illustrates this non-constructivity in a very accessible manner. In CLASS the
defining characteristic of the real numbers is the least-upper-bound-property,
the statement that every subset of the real numbers that is bounded from
above has a supremum. At first glance this statement seems docile, but its
unruliness is revealed when we take a look at a concrete example of such a
subset: Let 𝑃(𝑛) be some property of a natural number 𝑛 and consider the
sequence (𝑥𝑛)𝑛∈ℕ defined as follows:

𝑥𝑛 ≔ {0 if 𝑃(𝑛) holds
1 else
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Now consider the set {𝑥𝑛 | 𝑛 ∈ ℕ} of the values of (𝑥𝑛)𝑛∈ℕ, that, being a
subset of {0, 1}, is obviously bounded from above. The least-upper-bound-
property now states that this set has a supremum. It does not, however,
provide an algorithm or any other means of computing this supremum. This
becomes clear if we let 𝑃(𝑛) be the statement that 𝑛 satisfies e. g. the property
of the Goldbach conjecture. If the least-upper-bound-property provided such
a computational means, we could use it to immediately prove or refute the
Goldbach conjecture, depending on whether the computation of the supremum
results in 0 or 1.

From a constructivist mathematician’s viewpoint, non-constructivist state-
ments about existence are inherently pointless. This includes the least-upper-
bound-property discussed above but it actually extends to most of contem-
porary mathematics. In this sense, non-constructivism makes mathematics
philosophically vulnerable.

However, cleansing the whole body of modern mathematics of non-construc-
tivist methods is not an easy feat and transcends the mere removal of LEM.
Unfortunately, many definitions and properties of CLASS are aligned with the
non-constructivism and are either not true or not sensible in constructivist
mathematics. It seems therefore, that abandoning our current framework
altogether and building a new foundation might be the solution to the problem
rather than only switching to an intuitionistic framework. Historically, there
have been different approaches to this matter, depending on how much of
the tried concepts people were willing to sacrifice, with maybe intensional
type theory being at the other end of the spectrum. As every one of those
strategies has its advantages and drawbacks, there is no way to tell which one
is the best. According to Bishop, due to the heavy reliance on set-theoretic
methods

[a]ny constructive approach to mathematics will find a crucial test in
its ability to assimilate the intricate body of mathematical thought
called measure theory, or the theory of integration [1, pp. 215-216].

Needless to say, the focus of the approach of Bishop [2] and later Bishop and
Bridges [1] lies in analysis and integration theory. It is a rather informal theory
that retains many elements of classical set theory, one of the most significant
differences being the reliance on abstract equality relations as an inherent
part of sets, rather than only using the definitional equality. Accordingly, the
notion of a subset is not limited to extensional subsets with every element
actually being definitionally equal to some element of the superset. Another
difference is the shift to using function-based definitions instead of set-based
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ones. This is justified by the fact that functions have proven to be more useful
in the constructivist framework as “functions are sharply defined, whereas
most sets are fuzzy around the edges” [1, p. 77]. As such, a functional approach
similar to the Daniell Integral was chosen over the measure theoretic approach
for the integration theory.

The approach of Bishop and Bridges [1] is, however, not completely flawless.
One point of criticism is that it is impredicative in the sense that it allows
membership properties of sets that contain quantifications over the whole
universe. The problem here is that in order to verify if an object satisfies
such a property, one would have to check said property for every single set
beforehand. In this thesis, we use an approach inspired by the definitions in
Petrakis [3] and Petrakis [4] in order to try to reformulate the construction of
the integral of Bishop and Bridges [1] in a way that avoids impredicativity.
Additionally we try to make definitions and propositions clearer through the
explicit use of moduli.
In the first chapter, we establish the fundamental notions of Bishop’s set

theory as well as constructive real analysis, the building blocks for the later
chapters. In the second chapter, we introduce and elaborate on the topic
of metric spaces, working towards the definition of local compactness. The
third chapter deals with the actual integration theory. Some other important
definitions and propositions lead us then to the main result of this thesis
stating that the set of continuous functions with compact support constitutes
an integration space within our framework.
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1 Basic Definitions

In this chapter we introduce the fundamental concepts are required later
in the thesis. In the first section, we introduce the notions that lie at the
very foundation of Bishop Set Theory. This includes definitions such as sets,
functions, subsets and partial functions. We also touch the topics of equality
and apartness as well as the union and intersection of subsets. The second
section deals with families and sets of subsets and partial functions. In the
third section, we define important notions of constructive real analysis and
prove some useful statements. The definitions in the first two sections are
adopted from Petrakis [3], while the third section exclusively references Bishop
and Bridges [1].

1.1 Basic Notions of Bishop Set Theory
Bishop Set Theory (BST) is a constructive set theory that uses the framework
of first-order intuitionistic logic with equality [3]. The two core concepts are
sets and functions, both of which are considered atomic. This is as opposed to
other set theories like ZF, where only the notion of set is atomic and functions
are modeled as special sets. It is worth noting though, that sets and functions
are themselves special cases of so-called totalities and operations which are
roughly the equivalent of classes in ZF and are generally avoided.

The primitive (logical) equality of BST is the equality relation ≔ embodying
the fact that two objects are fundamentally the same, rather than the same
with respect to a certain non-trivial equality relation. Therefore, if 𝑃 is some
property, then in any case it holds that [𝑎 ≔ 𝑏 ∧ 𝑃(𝑎)] ⟹ 𝑃(𝑏).

Within BST we consider the set of natural numbers ℕ as a special primitive
set. Its property is that it obeys the Peano axioms and especially the induction
property.

Definition 1. A (defined) totality 𝑋 is the structure induced by formula ℳ𝑋
of first order intuitionistic logic for which we define that 𝑥 ∈ 𝑋 ∶ ⟺ ℳ𝑋(𝑥).
In this case we call ℳ𝑋 the membership condition of 𝑋. Two totalities 𝑋, 𝑌,
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defined by the membership conditions ℳ𝑋 and ℳ𝑌 respectively, are said
to be definitionally equal, in symbols 𝑋 ≔ 𝑌, iff for all 𝑥 it is true that
ℳ𝑋(𝑥) ∶ ⟺ ℳ𝑌(𝑥).
A set is a pair (𝑋, =𝑋) satisfying the following properties:

(i) The membership condition ℳ𝑋 of 𝑋 is a finite construction. (see remark
1)

(ii) =𝑋 is an equivalence relation, i. e. it is reflexive (𝑥 =𝑋 𝑥), symmetric
(𝑥 =𝑋 𝑦 ⟹ 𝑦 =𝑋 𝑥) and transitive ((𝑥 =𝑋 𝑦 ∧ 𝑦 =𝑋 𝑧) ⟹ 𝑥 =𝑋 𝑧).

If 𝑥0 is such that 𝑥0 ∈ 𝑋, then say that (𝑋, =𝑋) is inhabited by 𝑥0 or
simply an inhabited set.
As an auxiliary structure we also define the universe 𝕍0 to be a special

open ended totality that has the special property that it contains every set.
The universe 𝕍0 should generally be avoided and we only ever use it in the
context of introducing other sets by saying they are a member of 𝕍0. We also
use it later to introduce the equality =𝕍0

of sets.

Remark 1. By finite construction we mean that the membership condition is
predicative, i. e. that every quantification is a quantification over a proper set,
and specifically that there are no quantifications over the whole universe 𝕍0.

Definition 2. Let (𝑋, =𝑋), (𝑌 , =𝑌) be sets. Then we define the cartesian
product 𝑋 × 𝑌 in the obvious way as the totality given by the membership
condition

ℳ𝑋×𝑌(𝑧) ∶ ⟺ ∃𝑥∈𝑋∃𝑦∈𝑌 (𝑧 ≔ (𝑥, 𝑦))

and the equality given by

(𝑥, 𝑦) =𝑋×𝑌 (𝑥′, 𝑦′) ∶ ⟺ 𝑥 =𝑋 𝑥′ ∧ 𝑦 =𝑌 𝑦′

Since there is no quantification over 𝕍0, 𝑋 × 𝑌 is considered to be a set. If
𝑁 ∈ ℕ and (𝑋0, =𝑋0), … , (𝑋𝑁, =𝑋𝑁) are sets, then we similarly define the
cartesian product

𝑛
∏
𝑗=0

𝑋𝑗

Definition 3. Let (𝑋, =𝑋) be a set. A relation ≠𝑋 is called an apartness
relation on 𝑋 if for all 𝑥, 𝑦 ∈ 𝑋 the following hold:

(i) (𝑥 =𝑋 𝑦 ∧ 𝑥 ≠𝑋 𝑦) ⟹ ⊥
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(ii) 𝑥 ≠𝑋 𝑦 ⟹ 𝑦 ≠𝑋 𝑥

(iii) 𝑥 ≠𝑋 𝑦 ⟹ ∀𝑧∈𝑋(𝑧 ≠𝑋 𝑥 ∨ 𝑧 ≠𝑋 𝑦)

In this case we call the triple (𝑋, =𝑋, ≠𝑋) a set with apartness. [3, p. 11]

Definition 4. For totalities 𝑋 and 𝑌, a non-dependent assignment routine 𝑓
from 𝑋 to 𝑌, denoted by 𝑓 ∶ 𝑋 ⇝ 𝑌, is a finite routine that assigns an element
𝑦 ∈ 𝑌 to each given element 𝑥 of 𝑋. In this case we also write 𝑓(𝑥) ≔ 𝑦. Two
non-dependent assignment routines 𝑓, 𝑔 ∶ 𝑋 ⇝ 𝑌 are definitionally equal iff
they map definitionally equal elements to definitionally equal elements, i. e.

𝑓 ≔ 𝑔 ∶ ⟺ ∀𝑥∈𝑋(𝑓(𝑥) ≔ 𝑔(𝑥))

If 𝑋, 𝑌 and 𝑍 are totalities and 𝑓 ∶ 𝑋 ⇝ 𝑌 as well as 𝑔 ∶ 𝑌 ⇝ 𝑍 are
non-dependent assignment routines, then we define the composition 𝑔 ∘ 𝑓 by

(𝑔 ∘ 𝑓)(𝑥) ≔ 𝑔(𝑓(𝑥))

If (𝑋, =𝑋) and (𝑌 , =𝑌) are in fact sets, a non-dependent assignment routine
𝑓 ∶ 𝑋 ⇝ 𝑌 is called an operation. We define the set 𝒪(𝑋, 𝑌 ) of all operations
from 𝑋 to 𝑌 together with the equality =𝒪(𝑋,𝑌 ) given by

𝑓 =𝒪(𝑋,𝑌 ) 𝑔 ∶ ⟺ ∀𝑥 ∈ 𝑋(𝑓(𝑥) =𝑌 𝑔(𝑋))

If 𝑓 ∈ 𝒪(𝑋, 𝑌 ) respects the equalities =𝑋 and =𝑌, i. e.

∀𝑥,𝑥′∈𝑋(𝑥 =𝑋 𝑥′ ⟹ 𝑓(𝑥) =𝑌 𝑓(𝑥′))

then 𝑓 is called a function and we write 𝑓 ∶ 𝑋 → 𝑌. Similarly to 𝒪(𝑋, 𝑌 )
we define the set ℱ(𝑋, 𝑌 ) to be the set of all functions from 𝑋 to 𝑌. It is
equipped with the equality =ℱ(𝑋,𝑌 ) derived from the equality =𝒪(𝑋,𝑌 ).
If 𝑋 and 𝑌 are each equipped with apartness relations ≠𝑋 and ≠𝑌 respec-

tively, 𝑓 ∶ 𝑋 → 𝑌 is said to be strongly extensional iff it respects inequalities
in the obvious way, i. e.

∀𝑥,𝑥′∈𝑋(𝑓(𝑥) ≠𝑌 𝑓(𝑥′) ⟹ 𝑥 ≠𝑋 𝑥′)

In the case that 𝑋 and 𝑌 are equipped wiht the apartness relations, we
define the apartness ≠𝒪(𝑋,𝑌 ) by letting

𝑓 ≠𝒪(𝑋,𝑌 ) 𝑔 ∶ ⟺ ∃𝑥 ∈ 𝑋(𝑓(𝑥) ≠𝑌 𝑔(𝑥))
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Similarly, ≠ℱ(𝑋,𝑌 ) is derived from ≠𝒪(𝑋,𝑌 ).
Lastly, 𝑓 ∶ 𝑋 → 𝑌 is said to be an embedding iff

∀𝑥,𝑥′∈𝑋(𝑓(𝑥) =𝑌 𝑓(𝑥′) ⟹ 𝑥 =𝑋 𝑥′)

and we write 𝑓 ∶ 𝑋 ↪ 𝑌. We also define the Set Emb(𝑋, 𝑌 ) to be the set of
all embeddings from 𝑋 to 𝑌. Its equality =Emb(𝑋,𝑌 ) is derived from 𝒪(𝑋, 𝑌 ).

Definition 5. For a set 𝐼 and a non-dependent assignment routine
𝜆0 ∶ 𝐼 ⇝ 𝕍0, a dependent operation Φ over 𝜆0 is itself an assignment routine,
where for every 𝑖 ∈ 𝐼 we have that Φ𝑖 ≔ Φ(𝑖) ∈ 𝜆0(𝑖). We sometimes also
write

Φ ∶
k

𝑖∈𝐼

𝜆0(𝑖)

instead. Two non-dependent assignment routines Φ, Ψ ∶
c

𝑖∈𝐼 𝜆0(𝑖) are consid-
ered equal iff for every 𝑖 ∈ 𝐼 we have that Φ(𝑖) =𝜆0(𝑖) Ψ(𝑖).

Definition 6. Let (𝑋, =𝑋) and (𝐴, =𝐴) be sets. If 𝜄𝑋
𝐴 ∶ 𝐴 ↪ 𝑋 is an

embedding, the pair (𝐴, 𝜄𝑋
𝐴) is called a subset. In the case that (𝐴, =𝐴) is

actually inhabited by 𝑎0, we call (𝐴, 𝜄𝑋
𝐴 , 𝑎0) an inhabited subset.

If (𝐵, 𝜄𝑋
𝐵) is another subset of 𝑋, then we say that (𝐴, 𝜄𝑋

𝐴) is a subset of
(𝐵, 𝜄𝑋

𝐵), in symbols (𝐴, 𝜄𝑋
𝐴) ⊆ (𝐵, 𝜄𝑋

𝐵), iff there is a modulus of the subset
property, i. e. there exists a function 𝐟 ∶ 𝐴 → 𝐵 such that the following
diagram commutes with respect to the equalities =𝑋 and =𝑌:

𝑋

𝐴 𝐵𝐟

𝜄𝑋
𝐴 𝜄𝑋

𝐵

In this case we write 𝐟 ∶ 𝐴 ⊆ 𝐵. We denote by 𝒫(𝑋) the totality of all
subsets of 𝑋. Its equality is given by the condition

(𝐴, 𝜄𝑋
𝐴) =𝒫(𝑋) (𝐵, 𝜄𝑋

𝐵) ∶ ⟺ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴

In this case, if 𝐟 ∶ 𝐴 ⊆ 𝐵 and 𝐠 ∶ 𝐵 ⊆ 𝐴, then we write (𝑓, 𝑔) ∶ 𝐴 =𝒫(𝑋) 𝐵.

Remark 2. The powerset 𝒫(𝑋) of a set 𝑋 is not considered to be a set,
since the membership condition contains a quantification over the universe:

ℳ𝒫(𝑋)(𝑥) ∶ ⟺ ∃𝐴∈𝕍0
∃𝜄𝑋

𝐴∈ℱ(𝐴,𝑋)(𝑥 ≔ (𝐴, 𝜄𝑋
𝐴))
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Definition 7. Let (𝑋, =𝑋) be a set and 𝑃 a property given by a formula
𝑃(𝑥). We call 𝑃(𝑥) an extensional property on 𝑋 iff for every 𝑥, 𝑦 ∈ 𝑋 it
holds that

(𝑥 =𝑋 𝑦 ∧ 𝑃(𝑥)) ⟹ 𝑃(𝑦)

The extensional property 𝑃(𝑥) induces a canonical subset 𝑋𝑃 of 𝑋. The
membership condition ℳ𝑋𝑃

is given by

ℳ𝑋𝑃
(𝑥) ∶ ⟺ ℳ𝑋(𝑥) ∧ 𝑃(𝑥)

and the equality =𝑋𝑃
is defined in the obvious way by letting

𝑥 =𝑋𝑃
𝑦 ∶ ⟺ 𝑥 =𝑋 𝑦

In this case we call the subset (𝑋𝑃, id) of 𝑋 the extensional subset of 𝑋 defined
by 𝑃. We also write {𝑥 ∈ 𝑋 | 𝑃(𝑥)} instead of 𝑋𝑃.

Remark 3. Let (𝑋, =𝑋) be a set and consider the set 𝑋 × 𝑋. A useful
example for an extensional subset is 𝐷(𝑋), the diagonal of 𝑋. It is defined as

𝐷(𝑋) ≔ {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 | 𝑥 =𝑋 𝑦}

Another useful extensional subset is the image of a function. Let (𝑋, =𝑋)
and (𝑌 , =𝑌) be sets and 𝑓 ∶ 𝑋 → 𝑌 a function. Then we define the set

𝑓(𝑋) ≔ {𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝑋 𝑓(𝑥) =𝑌 𝑦}

together with a modulus 𝐟−1 ∶ 𝑓(𝑋) → 𝑋 that gives us a preimage for each
element of 𝑓(𝑋). Note that 𝐟−1 should not be confused with the inverse
function 𝑓−1 that only exists iff f is a bijection.

Definition 8. Let (𝐴, 𝜄𝑋
𝐴) and (𝐵, 𝜄𝑋

𝐵) be subsets of 𝑋. The union 𝐴 ∪ 𝐵 is
the subset of 𝑋 defined by

ℳ𝐴∪𝐵(𝑥) ∶ ⟺ ℳ𝐴(𝑥) ∨ ℳ𝐵(𝑥)

Its embedding is given by

𝜄𝑋
𝐴∪𝐵(𝑧) ≔ {𝜄𝑋

𝐴(𝑧) 𝑧 ∈ 𝐴
𝜄𝑋
𝐵(𝑧) 𝑧 ∈ 𝐵
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and the equality is given by the formula

𝑧 =𝐴∪𝐵 𝑤 ∶ ⟺ 𝜄𝑋
𝐴∪𝐵(𝑧) =𝑋 𝜄𝑋

𝐴∪𝐵(𝑤)

The intersection 𝐴 ∩ 𝐵 is defined as the set

𝐴 ∩ 𝐵 ≔ {(𝑎, 𝑏) ∈ 𝐴 × 𝐵 | 𝜄𝑋
𝐴(𝑎) =𝑋 𝜄𝑋

𝐵(𝑏)}

of 𝐴 × 𝐵 together with the embedding given by 𝜄𝑋
𝐴∩𝐵(𝑎, 𝑏) ≔ 𝜄𝑋

𝐴(𝑎).

A partial function is a function that is defined on a subset rather than the
whole set. Unfortunately the totality of partial functions is not a set as the
membership condition, like for the powerset, requires the quantification over
the universe 𝕍0.

Definition 9. Let 𝑋, 𝑌 be sets, (𝐴, 𝜄𝑋
𝐴) a subset of 𝑋 and 𝑓𝑌

𝐴 ∶ 𝐴 → 𝑌. Then
we call (𝐴, 𝜄𝑋

𝐴 , 𝑓𝑌
𝐴) a partial function from 𝑋 to 𝑌 and write 𝑓𝑌

𝐴 ∶ 𝑋 ⇀ 𝑌. In
addition, we define the totality 𝔉(𝑋, 𝑌 ) of partial functions from 𝑋 to 𝑌. Two
partial functions are considered equal, i. e. (𝐴, 𝜄𝑋

𝐴 , 𝑓𝑌
𝐴) =𝔉(𝑋,𝑌 ) (𝐵, 𝜄𝑋

𝐵 , 𝑓𝑌
𝐵), if

there are moduli 𝐞𝐴𝐵 ∶ 𝐴 → 𝐵 and 𝐞𝐵𝐴 ∶ 𝐵 → 𝐴 such that

𝜄𝑋
𝐴 =ℱ(𝐴,𝑋) 𝜄𝑋

𝐵 ∘ 𝐞𝐴𝐵 𝜄𝑋
𝐵 =ℱ(𝐵,𝑋) 𝜄𝑋

𝐴 ∘ 𝐞𝐵𝐴

𝑓𝑌
𝐴 =ℱ(𝐴,𝑌 ) 𝑓𝑌

𝐵 ∘ 𝐞𝐴𝐵 𝑓𝑌
𝐵 =ℱ(𝐵,𝑌 ) 𝑓𝑌

𝐴 ∘ 𝐞𝐵𝐴

i. e. in the corresponding diagram of figure 1.1 the upper and lower triangles
each commute:

𝑋

𝐴 𝐵

𝑌

𝐞𝐴𝐵

𝜄𝑋
𝐴

𝑓𝑌
𝐴

𝐞𝐵𝐴

𝜄𝑋
𝐵

𝑓𝑌
𝐵

Figure 1.1: equality of partial functions
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1.2 Families and Sets of Subsets and Partial
Functions

In the following chapter we define the notions of families and sets of subsets
as well as partial functions in accordance to the definitions found in Petrakis
[3]. They are essential in our discussions as they allow us to avoid the
impredicativity that arises from the use of the powerset in the usual definition
of sets of subsets and sets of partial functions.

Definition 10. Let (𝑋, =𝑋) and (𝐼, =𝐼) be sets. Let further 𝜆0 ∶ 𝐼 ⇝ 𝕍0
be a non-dependent assignment routine, ℰ𝑋 ∶

c
𝑖∈𝐼 ℱ(𝜆0(𝑖), 𝑋) a dependent

operation where for every 𝑖 ∈ 𝐼 we have that ℰ𝑋(𝑖) is an embedding and

𝜆1 ∶
k

(𝑖,𝑗)∈𝐷(𝐼)

ℱ(𝜆0(𝑖), 𝜆0(𝑗))

a dependent operation where 𝜆1(𝑖, 𝑖) ≔ id𝜆0(𝑖) for every 𝑖 ∈ 𝐼. Then we call
(𝜆0, ℰ𝑋, 𝜆1) an 𝐼-family of subsets of 𝑋 iff for every 𝑖, 𝑗 ∈ 𝐼 such that 𝑖 =𝐼 𝑗
we have that

ℰ𝑋(𝑖) =ℱ(𝜆0(𝑖),𝑋) ℰ𝑋(𝑗) ∘ 𝜆1(𝑖, 𝑗)
ℰ𝑋(𝑗) =ℱ(𝜆0(𝑗),𝑋) ℰ𝑋(𝑖) ∘ 𝜆1(𝑗, 𝑖)

i. e. if the the diagrams in figure 1.2 commute.

𝑋

𝜆0(𝑖) 𝜆0(𝑗)
𝜆1(𝑖,𝑗)

ℰ𝑋(𝑖)
𝜆1(𝑗,𝑖)

ℰ𝑋(𝑗)

Figure 1.2: family of subsets

Remark 4. In other words, the I-family (𝜆0, ℰ𝑋, 𝜆1) of subsets of 𝑋 consists
of the indexing set 𝐼 as well as the functions 𝜆0 and ℰ𝑋 that specify the
indexed subset (𝜆0(𝑖), ℰ𝑋(𝑖)) for every 𝑖 ∈ 𝐼. 𝜆1 ensures that 𝜆0 respects the
equality =𝑋.

Definition 11. Let (𝑋, =𝑋), (𝑌 , =𝑌) and (𝐼, =𝐼) be sets. Let further
(𝜆0, ℰ𝑋, 𝜆1) ∈ Fam(𝐼, 𝑋) and 𝒫𝑌 ∶

c
𝑖∈𝐼 ℱ(𝜆0(𝑖), 𝑌 ). We call (𝜆0, ℰ𝑋, 𝜆1, 𝒫𝑌)
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an 𝐼-family of partial functions from 𝑋 to 𝑌, iff the following equalities hold
for all 𝑖, 𝑗 ∈ 𝐼 with 𝑖 =𝐼 𝑗:

ℰ𝑋(𝑖) =ℱ(𝜆0(𝑖),𝑋) ℰ𝑋(𝑗) ∘ 𝜆1(𝑖, 𝑗)
ℰ𝑋(𝑗) =ℱ(𝜆0(𝑗),𝑋) ℰ𝑋(𝑖) ∘ 𝜆1(𝑗, 𝑖)
𝒫𝑌(𝑖) =ℱ(𝜆0(𝑖),𝑌 ) 𝒫𝑌(𝑗) ∘ 𝜆1(𝑖, 𝑗)
𝒫𝑌(𝑗) =ℱ(𝜆0(𝑗),𝑌 ) 𝒫𝑌(𝑖) ∘ 𝜆1(𝑗, 𝑖)

i. e. if the diagrams in figure 1.3 commute:

𝑋

𝜆0(𝑖) 𝜆0(𝑗)

𝑌

𝜆1(𝑖,𝑗)

ℰ𝑋(𝑖)

𝒫𝑌(𝑖)

𝜆1(𝑗,𝑖)
ℰ𝑋(𝑗)

𝒫𝑌(𝑗)

Figure 1.3: family of partial functions

Definition 12. Additionally we define the the totalities Fam(𝐼, 𝑋) and
Fam(𝐼, 𝑋, 𝑌 ) to be the totality of all families of subsests of 𝑋 and the totality
of all families of partial functions from 𝑋 to 𝑌. For a detailed discussion,
please refer to Petrakis [3].

Next we consider the special case for the above definitions where the non-
dependent assignment routines 𝜆0 have the embedding property. In this case
we call the structures “sets” instead of “families”.

Definition 13. Let (𝑋, =𝑋) and (𝐼, =𝐼) be sets and let further
(𝜆0, ℰ𝑋, 𝜆1) ∈ Fam(𝐼, 𝑋). If for all 𝑖, 𝑗 ∈ 𝐼 we have that

𝜆0(𝑖) =𝒫(𝑋) 𝜆0(𝑗) ⟹ 𝑖 =𝐼 𝑗

then we call (𝜆0, ℰ𝑋, 𝜆1) an 𝐼-set of subsets of 𝑋. Additionally we define
Set(𝐼, 𝑋) to be the totality of 𝐼-sets of subsets of 𝑋. The equality =Set(𝐼,𝑋) is
given by the equality =Fam(𝐼,𝑋).
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Definition 14. Let (𝑋, =𝑋), (𝑌 , =𝑌) and (𝐼, =𝐼) be sets and let
(𝜆0, ℰ𝑋, 𝜆1, 𝒫𝑌) ∈ Fam(𝐼, 𝑋, 𝑌 ). We call (𝜆0, ℰ𝑋, 𝜆1, 𝒫𝑌) an 𝐼-set of partial
functions from 𝑋 to 𝑌 iff for all 𝑖, 𝑗 ∈ 𝐼 we have that

(𝜆0(𝑖), ℰ𝑋(𝑖), 𝒫𝑌(𝑖)) =𝔉(𝑋,𝑌 ) (𝜆0(𝑗), ℰ𝑋(𝑗), 𝒫𝑌(𝑗))

Similar to sets of subsets, we define the totality Set(𝐼, 𝑋, 𝑌 ) of 𝐼-sets of partial
functions from 𝑋 to 𝑌, equipped with the equality =Set(𝐼,𝑋,𝑌 ) given by the
equality =Fam(𝐼,𝑋,𝑌 ).

Proposition 1. Let (𝑋, =𝑋) and (𝑌 , =𝑌) be sets and (𝐹 , 𝜄𝐹) be a subset of
ℱ(𝑋, 𝑌 ). We define:

(i) 𝜆0 ∶ 𝐹 ⇝ 𝕍0 is the constant non-dependent assignment routine with
𝜆0(𝑓) ≔ 𝑋 for all 𝑓 ∈ 𝐹.

(ii) ℰ𝑋 ∶
c

𝑓∈𝐹 ℱ(𝑋, 𝑋) is the constant dependent operation with
ℰ𝑋(𝑓) ≔ id𝑋 for all 𝑓 ∈ 𝐹.

(iii) 𝜆1 ∶
c

(𝑓,𝑔)∈𝐷(𝐹) ℱ(𝑋, 𝑋) is the constant dependent operation for which
𝜆1(𝑓, 𝑔) ≔ id𝑋 holds for all 𝑓, 𝑔 ∈ 𝐹 such that 𝑓 =𝐹 𝑔.

(iv) 𝒫𝑌 ∶
c

𝑓∈𝐹 ℱ(𝑋, 𝑌 ) is the dependent operation given by 𝒫𝑌(𝑓) ≔ 𝜄𝐹(𝑓)
for every 𝑓 ∈ 𝐹

Then ̄𝐹 ≔ (𝜆0, ℰ𝑋, 𝜆1, 𝒫𝑌) is a well-defined 𝐹-set of partial functions.

Proof. At first, we see that our definitions are well-defined and match the
signatures. The signatures in turn fit the requirements for ̄𝐹 to be an 𝐹-family
of partial functions from 𝑋 to 𝑌, and it remains to show that ̄𝐹 respects the
equality of 𝐹. Therefore let 𝑓, 𝑔 ∈ 𝐹 such that 𝑓 =𝐹 𝑔. Then due to the
extensionality of 𝜄𝐹, i. e. 𝜄𝐹(𝑓) =ℱ(𝑋,𝑌 ) 𝜄𝐹(𝑔), the following hold true:

ℰ𝑋(𝑓) ≔ id𝑋 =ℱ(𝑋,𝑌 ) id𝑋 ∘ id𝑋 ≔ ℰ𝑋(𝑔) ∘ 𝜆1(𝑓, 𝑔)
ℰ𝑋(𝑔) ≔ id𝑋 =ℱ(𝑋,𝑌 ) id𝑋 ∘ id𝑋 ≔ ℰ𝑋(𝑓) ∘ 𝜆1(𝑔, 𝑓)
𝒫𝑌(𝑓) ≔ 𝜄𝐹(𝑓) =ℱ(𝑋,𝑌 ) 𝜄𝐹(𝑔) =ℱ(𝑋,𝑌 ) 𝜄𝐹(𝑔) ∘ id𝑋 ≔ 𝒫𝑌(𝑔) ∘ 𝜆1(𝑓, 𝑔)
𝒫𝑌(𝑔) ≔ 𝜄𝐹(𝑔) =ℱ(𝑋,𝑌 ) 𝜄𝐹(𝑓) =ℱ(𝑋,𝑌 ) 𝜄𝐹(𝑓) ∘ id𝑋 ≔ 𝒫𝑌(𝑓) ∘ 𝜆1(𝑔, 𝑓)

I. e. the following diagrams commute:
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𝑋

𝑋 𝑋

𝑌

id𝑋

id𝑋

𝜄𝐹(𝑓)

id𝑋

id𝑋

𝜄𝐹(𝑔)

Together we have that ̄𝐹 ∈ Fam(𝐼, 𝑋, 𝑌 ). To show that ̄𝐹 is in fact a set of
partial functions, let 𝑓, 𝑔 ∈ 𝐹 and 𝐞1, 𝐞2 ∶ 𝑋 → 𝑋 such that

(𝐞1, 𝐞2) ∶ (𝑋, id𝑋, 𝜄𝐹(𝑓)) =𝔉(𝑋,𝑌 ) (𝑋, id𝑋, 𝜄𝐹(𝑔))

By definition this implies that id𝑋 =ℱ(𝑋,𝑋) id𝑋 ∘𝐞1 and id𝑋 =ℱ(𝑋,𝑋) id𝑋 ∘𝐞2,
i. e. 𝐞1 =ℱ(𝑋,𝑋) 𝐞2 =ℱ(𝑋,𝑋) id𝑋. With the other part of the definition we see
that

𝜄𝐹(𝑓) =ℱ(𝑋,𝑌 ) 𝜄𝐹(𝑔) ∘ id𝑋 =ℱ(𝑋,𝑌 ) 𝜄𝐹(𝑔)

Since 𝜄𝐹 is an embedding, we see that 𝑓 =𝐹 𝑔, i. e. ̄𝐹 ∈ Set(𝐼, 𝑋, 𝑌 ).

Last but not least note that there is also a predicative way to talk about
intersections and unions of families of subsets. For the exact workings, please
refer to Petrakis [3, pp. 91, 97]. For now it suffices to know that if (𝑋, =𝑋)
and (𝐼, =𝐼) are sets and (𝜆0, ℰ𝑋, 𝜆1) ∈ Fam(𝐼, 𝑋) is an 𝐼-family of subsets of
𝑋, then the intersection and union of (𝜆0, ℰ𝑋, 𝜆1) are denoted by the symbols

⋂
𝑖∈𝐼

𝜆0(𝑖) and ⋃
𝑖∈𝐼

𝜆0(𝑖)

respectively and that they are defined predicatively in a sensible manner.

1.3 Constructive Real Analysis
This section briefly introduces some of the fundamental properties of the real
numbers as described in chapter 2 of Bishop and Bridges [1]. A detailed
discussion as well as corresponding proofs can be found in the original work.
In the following we assume that in addition to the natural numbers ℕ as

well as the positive natural numbers ℕ+ and for 𝑛 ∈ ℕ the set ℕ≤𝑛 of all
natural numbers smaller or equal than 𝑛, the set ℤ of integers and the set
ℚ of rational numbers have already been constructed from the set ℕ in the
usual algebraic manner and are therefore equipped with the usual arithmetic
operations as well as the absolute value function. Furthermore, we assume
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they are equipped with the usual total orderings <ℕ, <ℤ and <ℚ. Note that
for each of them the dichotomy

𝑥 ≤ 𝑦 ∨ 𝑦 < 𝑥

holds, where 𝑥 ≤ 𝑦 ∶ ⟺ (𝑦 < 𝑥) ⟹ ⊥. However, this is not true for the
real numbers defined below.

Definition 15. A sequence (𝑥𝑛)𝑛∈ℕ+ in the rational numbers is a real number
or regular sequence, iff for all 𝑚, 𝑛 ∈ ℕ+ we have that

|𝑥𝑚 − 𝑥𝑛| ≤ 𝑚−1 + 𝑛−1

The set of real numbers is defined as (ℝ, =ℝ) consisting of the following:

(i) The totality ℝ of all regular sequences.

(ii) The equality =ℝ where two real numbers (𝑥𝑛)𝑛∈ℕ+ and (𝑦𝑛)𝑛∈ℕ+ are
considered equal, i. e. (𝑥𝑛)𝑛∈ℕ+ =ℝ (𝑦𝑛)𝑛∈ℕ+ , iff for all 𝑛 ∈ ℕ+ we have
that |𝑥𝑛 − 𝑦𝑛| ≤ 2𝑛−1. =ℝ constitutes an equivalence relation. For the
sake of convenience, we refer to =ℝ simply as =.

If 𝑋 is a set, then for the sake of convenience we define ℱ(𝑋) ≔ ℱ(𝑋, ℝ).
For a real number 𝑥 ≔ (𝑥𝑛)𝑛∈ℕ+ we define the canonical bound 𝒦_𝑥 ∈ ℕ+

for 𝑥 to be the least natural number such that |𝑥1| + 2 < 𝒦_𝑥. In this case,
for all (𝑦𝑛)𝑛∈ℕ+ ∈ ℝ such that (𝑥𝑛)𝑛∈ℕ+ = (𝑦𝑛)𝑛∈ℕ+ , it holds that |𝑦𝑛| < 𝐾𝑥
for every 𝑛 ∈ ℕ+.

Remark 5. The operation 𝒦_ ∶ ℝ → ℕ+ is an example of an operation
that is not a function. Both 𝑥 ≔ (0, 1, 1, … ) and 𝑦 ≔ (2, 1, 1, … ) are real
numbers representing the number 1, i. e. 𝑥 = 𝑦 = 1, however, it is 𝒦_𝑥 ≔ 2
and 𝒦_𝑦 ≔ 4.

Definition 16. Let (𝑥𝑛)𝑛∈ℕ+ ∈ ℝ. We say that (𝑥𝑛)𝑛∈ℕ+ is positive, iff there
exists 𝑛 ∈ ℕ+ such that

𝑛−1 < 𝑥𝑛

It is called non-negative iff for all 𝑛 ∈ ℕ+ we have that

−𝑛−1 ≤ 𝑥𝑛

Now we can easily define the sets ℝ+ of all the positive real numbers as well
as the set ℝ≥0 of all non-negative real numbers. For ℝ+, however an object
𝑥 ∈ ℝ+ is always accompanied by a specific modulus of positivity 𝐧 ∈ ℕ+.
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Additionally, we define a real number 𝑥 ∈ ℝ to be negative, iff −𝑥 ∈ ℝ+,
and non-positive if −𝑥 ∈ ℝ≥0.

Definition 17. Let 𝑥, 𝑦 ∈ ℝ. We define the order relations <, >, ≤, ≥ as
follows:

𝑥 < 𝑦 ∶ ⟺ 𝑦 − 𝑥 ∈ ℝ+

𝑥 ≤ 𝑦 ∶ ⟺ 𝑦 − 𝑥 ∈ ℝ≥0

Furthermore, we say that 𝑦 > 𝑥 iff 𝑥 < 𝑦 and 𝑦 ≥ 𝑥 iff 𝑥 ≤ 𝑦. We define the
real intervals as extensional subsets in the usual way.
Finally, we say that 𝑥 ≠ℝ 𝑦 or conveniently 𝑥 ≠ 𝑦, iff 𝑥 < 𝑦 ∨ 𝑦 < 𝑥.

Lemma 1. If 𝑥, 𝑦 ∈ ℝ such that 𝑥 < 𝑦, then there exists 𝛼 ∈ ℝ such that
𝑥 < 𝛼 < 𝑦.

Corollary 1. Let 𝑥, 𝑦 ∈ ℝ such that 𝑥 < 𝑦. Then the constructive dichotomy
holds, i. e. for every 𝑧 ∈ ℝ we have that 𝑥 < 𝑧 ∨ 𝑧 < 𝑦.

Lemma 2. Let 𝑥, 𝑦 ∈ ℝ. If 𝑥 > 𝑦 implies 0 = 1, i. e. ¬(𝑥 > 𝑦), then it holds
that 𝑥 ≤ 𝑦.

Definition 18. Let (𝐴, 𝜄) be a subset of ℝ inhabited by 𝑎0 ∈ 𝐴. Then we
say that 𝐴 is bounded from above (resp. below) iff there is 𝑏 ∈ ℝ such that
𝜄(𝑎) ≤ 𝑏 (resp. 𝑏 ≤ 𝜄(𝑎)) for every 𝑎 ∈ 𝐴. 𝑏 is said to be the supremum (resp.
infimum) of 𝐴 iff for every 𝜀 ∈ ℝ+ there is some 𝑎 ∈ 𝐴 such that 𝑏 < 𝑎 + 𝜀
(resp. 𝑎 − 𝜀 < 𝑏).

If they exist, the supremum and infimum are unique. We therefore write
𝑏 = sup𝐴 (resp. 𝑏 = inf𝐴).

Definition 19. Let 𝑥, 𝑦 ∈ ℝ. We also define the minimum min as well as the
maximum max of 𝑥 and 𝑦 in the usual way as one of the two elements such
that

𝑥, 𝑦 ≤ max(𝑥, 𝑦) and min(𝑥, 𝑦) ≤ 𝑥, 𝑦

Additionally, if (𝑋, =𝑋) is a set and 𝑓, 𝑔 ∈ ℱ(𝑋), we define the functions
𝑓 ∧ 𝑔, 𝑓 ∨ 𝑔 ∈ ℱ(𝑋) such that

(𝑓 ∨ 𝑔)(𝑥) ≔ max(𝑥, 𝑦) (𝑓 ∧ 𝑔)(𝑥) ≔ min(𝑥, 𝑦)

Remark 6. In constructive mathematics, supremum and infimum (like many
other constructive concepts) are stronger concepts than their counterparts
in classical mathematics as their existence requires an actual construction.
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The fundamental theorem in classical analysis that every nonvoid subset of
ℝ that is bounded from above has a supremum is not valid in constructive
analysis. There is, however, a constructive counterpart for this least-upper-
bound-property in the form of proposition 2.

Proposition 2. Let (𝐴, 𝜄) be a subset of ℝ inhabited by 𝑥0 that is bounded
from above, i. e. there is 𝑏 ∈ ℝ such for all 𝑎 ∈ 𝐴 it holds that 𝜄(𝑎) < 𝑏.
Then sup𝐴 exists iff for all 𝑥, 𝑦 ∈ ℝ such that 𝑥 < 𝑦 we have that one of the
following cases holds:

(i) 𝑦 is an upper bound of 𝐴

(ii) there is some 𝑎 ∈ 𝐴 such that 𝑥 < 𝜄(𝑎)
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2 Metric Spaces

In this chapter, we establish the necessary definitions to later develop our
theory of locally compact metric spaces. In the first section we introduce the
notion of metric spaces, locatedness as well as uniform continuity. This is
followed by sections covering boundedness, completeness, total boundedness
and compactness. In the sixth section we then define local compactness as
well as (Bishop) continuity and prove some practical statements.

At large, we follow the outline as well as the proofs presented in the chapter
about metric spaces of Bishop and Bridges [1], amending most of the definitions
in the way suggested by Petrakis [4] in order to avoid impredicativity. The
two exceptions of this are the third section about completeness and the fifth
section about compactness that exclusively reference the respective sections
of Bishop and Bridges [1].

2.1 Basic Definitions
A metric space is essentially a set equipped with a notion of distance between
its elements. The notion of metric spaces is an essential part of constructive
analysis. In this section we introduce its exact definition as well as some basic
related concepts. The definitions are adopted from Petrakis [4].

Definition 20. Let (𝑋, =𝑋) be a set and 𝑑 ∶ 𝑋 × 𝑋 → ℝ≥0 a function. 𝑑 is
a metric iff each of the following properties is satisfied for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(i) 𝑑 (𝑥, 𝑦) = 0 ⟺ 𝑥 =𝑋 𝑦

(ii) 𝑑 (𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

(iii) 𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)

In this case, we call (𝑋, 𝑑) a metric space.

Example. For every 𝑛 ∈ ℕ ℝ𝑛 equipped with the standard euclidean distance,
i. e. 𝑑𝜖 (∑𝑛

𝑖=1 𝑥𝑖𝑒𝑖, ∑𝑛
𝑖=1 𝑦𝑖𝑒𝑖) = √∑𝑛

𝑖=1|𝑥𝑖 − 𝑦𝑖|2, constitutes a metric space.
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Definition 21. Let (𝑋, =𝑋, 𝑑) be a metric space. Let further (𝐴, 𝜄) be a
subset of 𝑋. (𝐴, 𝜄) can also be viewed as a proper metric space with the
induced metric 𝑑𝐴, given by

𝑑𝐴 (𝑥, 𝑦) ≔ 𝑑 (𝜄(𝑥), 𝜄(𝑦))

for all 𝑥, 𝑦 ∈ 𝐴. In this case we also call (𝐴, 𝜄) a metric subspace of 𝑋. If 𝐴 is
an extensional subset of 𝑋, we have that 𝑑𝐴 (𝑥, 𝑦) ≔ 𝑑 (𝑥, 𝑦) and therefore we
often simply use 𝑑 for the sake of simplicity.

Definition 22. Let (𝑋, =𝑋, 𝑑) be a metric space. 𝑑 induces an apartness
relation on 𝑋 by letting 𝑥 ≠𝑋 𝑦 ⟺ 𝑑 (𝑥, 𝑦) >ℝ 0 for every 𝑥, 𝑦 ∈ 𝑋. We
call ≠𝑋 the canonical apartness of 𝑋.

Definition 23. Let (𝑋, =𝑋, 𝑑) be a metric space, 𝑥0 ∈ 𝑋 and 𝑅 ∈ ℝ+. The
open and closed ball of radius 𝑅 about 𝑥0 are the extensional subsets defined
by

[𝑑𝑥0
< 𝑅] ≔ {𝑥 ∈ 𝑋 | 𝑑 (𝑥, 𝑥0) < 𝑅}

[𝑑𝑥0
≤ 𝑅] ≔ {𝑥 ∈ 𝑋 | 𝑑 (𝑥, 𝑥0) ≤ 𝑅}

Definition 24. Let 𝑛 ∈ ℕ and (𝑋1, 𝑑1), … , (𝑋𝑛, 𝑑𝑛) be a finite sequence of
metric spaces. We define the metric 𝑑 on the cartesian product 𝑋 ≔ ∏𝑛

𝑖=1 𝑋𝑖
by letting

𝑑 (𝑥, 𝑦) ≔
𝑛

∑
𝑖=1

𝑑𝑖 (𝑥𝑖, 𝑦𝑖)

for every 𝑥 = (𝑥1, … , 𝑥𝑛), 𝑦 = (𝑦1, … , 𝑦𝑛) ∈ 𝑋. Then (𝑋, 𝑑) is a metric space.

Definition 25. Let (𝑋, =𝑋, 𝑑𝑋) and (𝑌 , =𝑌, 𝑑𝑌) be metric spaces and
𝑓 ∶ 𝑋 → 𝑌 a function. Additionally let 𝝎 ∶ ℝ+ → ℝ+ be a function. 𝑓
is said to be uniformly continuous with modulus of uniform continuity 𝝎 iff
for all 𝑥, 𝑦 ∈ 𝑋 and 𝜀 ∈ ℝ+ we have that

𝑑𝑋 (𝑥, 𝑦) ≤ 𝝎(𝜀) ⟹ 𝑑𝑌 (𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜀

Definition 26. Let (𝑋, 𝑑) be a metric space, (𝑥𝑛)𝑛∈ℕ a sequence of elements
of 𝑋, 𝑥 ∈ 𝑋 and 𝐍 ∶ ℝ+ → ℕ. We say that (𝑥𝑛)𝑛∈ℕ converges towards its
limit 𝑥 iff for every 𝜀 ∈ ℝ+ and every 𝑛 ∈ ℕ with 𝑛 > 𝐍(𝜀) we have that
𝑑 (𝑥𝑛, 𝑥) ≤ 𝜀. In this case we also use the notation lim𝑛→∞ 𝑥𝑛 = 𝑥.
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Definition 27. Let (𝑋, =𝑋, 𝑑) be a metric space and (𝐴, 𝜄) a subset. We say
that (𝐴, 𝜄) is located iff the following distance exists for every 𝑥 ∈ 𝑋:

𝑑 (𝑥, 𝐴) ≔ inf {𝑑 (𝑥, 𝜄(𝑦)) | 𝑦 ∈ 𝐴}

2.2 Boundedness
A bounded subset has the special property, that the distance between two
elements is bounded from above by some real number. We model this by
requiring the subset to be inhabited by some element, and by giving a bound
on the distance an arbitrary element is allowed to have from this inhabiting
element. The definitions in this chapter are adopted from Petrakis [4].

Definition 28. Let (𝑋, =𝑋, 𝑑) be a metric space inhabited by 𝑥0 and 𝐌 ∈ ℝ+.
𝑋 is bounded with modulus of boundedness 𝐌 and 𝑥0, iff for all 𝑥 ∈ 𝑋 we
have that 𝑑 (𝑥0, 𝑥) ≤ 𝑀. If diam𝑋 ≔ sup {𝑑 (𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝑋} exists, we call
diam𝑋 the diameter of 𝑋.
If (𝐴, 𝜄) is a metric subspace of 𝑋 inhabited by 𝑎0, we say that 𝐴 is a

bounded metric subset of 𝑋 iff there is some 𝐌𝐴 ∈ ℝ+ such that (𝐴, =𝐴, 𝑑𝐴)
is a bounded with modulus of boundedness 𝐌𝐴 and 𝑎0.

Proposition 3. Let (𝑋, 𝑑) be a metric space and (𝐴, 𝜄) a bounded subset
with modulus of boundedness 𝐌 ∈ ℝ+ and 𝑎0 ∈ 𝐴. For every 𝑎 ∈ 𝐴 the
subset (𝐴, 𝜄) is also bounded with modulus of boundedness 𝐌 + 𝑑 (𝑎0, 𝑎) and
𝑎.

Proof. Let 𝑥 ∈ 𝐴. We have that

𝑑 (𝑥, 𝑎) ≤ 𝑑 (𝑥, 𝑎0) + 𝑑 (𝑎0, 𝑎) ≤ 𝐌 + 𝑑 (𝑎0, 𝑎)

.

Lemma 3. Let (𝑋, 𝑑) be a metric space inhabited by some 𝑥0. For every 𝑛 ∈
ℕ+ the extensional subset [𝑑𝑥0

≤ 𝑛] is bounded with modulus of boundedness
𝑛 and 𝑥0.

Proof. This immediately follows from the fact that 𝑑 (𝑥0, 𝑥) ≤ 𝑛 for all
𝑥 ∈ [𝑑𝑥0

≤ 𝑛] by definition.

Proposition 4. Let (𝑋, 𝑑) be a metric space and (𝐴, 𝜄) a bounded metric
subset with modulus of boundedness 𝑀 ∈ ℝ+ and 𝑎0. Then 𝐴 is contained in
a closed ball about 𝜄(𝑎0), i. e. there exists 𝑛 ∈ ℕ+ such that (𝐴, 𝜄) ⊆ [𝑑𝜄(𝑎0) ≤
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𝑛]. In addition, if (𝑌 , 𝑑𝑌) is another metric space, then for any uniformly
continuous function 𝑓 ∶ [𝑑𝜄(𝑎0) ≤ 𝑛] → 𝑌 with modulus of uniform continuity
𝝎, the restriction function 𝑓 ∣𝐴∶ 𝐴 → 𝑌 defined by 𝑓 ∣𝐴 (𝑥) ≔ 𝑓(𝜄(𝑥)) is also
uniformly continuous with modulus of uniform continuity 𝝎.

Proof. If 𝒦_𝐌 denotes the canonical bound of 𝐌, the subset property

(𝐴, 𝜄) ⊆ [𝑑𝜄(𝑎0) ≤ 𝐾𝐌]

is naturally realised by the embedding 𝜄 as for every 𝑎 ∈ 𝐴 we have that
𝑑 (𝜄(𝑎0), 𝜄(𝑎)) = 𝑑 (𝑎0, 𝑎) ≤ 𝑀 ≤ 𝐾𝐌.

𝑋

𝐴 [𝑑𝑎0
≤ 𝐾𝐌]𝜄

𝜄 id

Now let 𝑓 ∶ [𝑑𝑎0
≤ 𝐾𝐌] → 𝑌 be uniformly continuous with modulus of

uniform continuity 𝝎 and let 𝜀 > 0 as well as 𝑥, 𝑦 ∈ 𝐴 such that 𝑑𝐴 (𝑥, 𝑦) < 𝝎𝜀.
Then by definition of 𝑑𝐴, we have that

𝑑 (𝜄(𝑥), 𝜄(𝑦)) = 𝑑𝐴 (𝑥, 𝑦) < 𝝎𝜀

as well and therefore it follows that

𝑑𝑌 (𝑓 ∣𝐴 (𝑥), 𝑓 ∣𝐴 (𝑦)) = 𝑑𝑌 (𝑓(𝜄(𝑥)), 𝑓(𝜄(𝑦))) ≤ 𝜀

by definition of 𝝎. Thus 𝝎 is also a modulus of uniform continuity for 𝑓 ∣𝐴.

2.3 Completeness
In the following section we generalize the construction of the set of real
numbers ℝ to arbitrary metric spaces by means of Cauchy sequences. We
therefore briefly discuss Cauchy sequences and other related definitions and
then define the notion of completeness of a metric space as introduced in
chapter 4 of Bishop and Bridges [1]. For a more detailed discussion as well as
proofs, please refer to the original work.

Definition 29. Let (𝑋, 𝑑) be a metric space and (𝑥𝑛)𝑛∈ℕ+ a sequence of
elements of 𝑋. We call (𝑥𝑛)𝑛∈ℕ+ regular iff for every 𝑚, 𝑛 ∈ ℕ+ the following
holds:

𝑑 (𝑥𝑚, 𝑥𝑛) ≤ 𝑚−1 + 𝑛−1
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We then define the set 𝑋̃ of all regular sequences of 𝑋 and call it the completion
of 𝑋completion. Its equality is given by

(𝑥𝑛)𝑛∈ℕ+ =𝑋̃ (𝑦𝑛)𝑛∈ℕ+ ∶ ⟺ 𝑑 (𝑥𝑛, 𝑦𝑛) ≤ 2𝑛−1

The completion 𝑋̃ is itself a metric space, equipped with the metric 𝑑
well-defined by

𝑑 ((𝑥𝑛)𝑛∈ℕ+ , (𝑦𝑛)𝑛∈ℕ+) ≔ lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑦𝑛)

for all (𝑥𝑛)𝑛∈ℕ+ , (𝑦𝑛)𝑛∈ℕ+ ∈ 𝑋̃.

Definition 30. Let (𝑋, 𝑑) be a metric space and (𝑥𝑛)𝑛∈ℕ+ a sequence of
elements of 𝑋. Let further 𝐍 ∶ ℝ+ → ℕ+ be a function. (𝑥𝑛)𝑛∈ℕ+ is a Cauchy
sequenceCauchy sequence with modulus 𝐍 iff for every 𝜀 ∈ ℝ+ we have that
for every 𝑚, 𝑛 ∈ ℕ+ such that 𝑚, 𝑛 ≥ 𝐍(𝜀) it holds that

𝑑 (𝑥𝑚, 𝑦𝑛) ≤ 𝜀

If 𝑋 is such that every Cauchy sequence converges, we call 𝑋 complete.

Theorem 1. Let (𝑋, 𝑑) be a metric space. 𝑋̃ is a complete metric space.

Proposition 5. Let (𝑋, 𝑑) be a metric space. 𝑋 is complete iff 𝑋 =𝕍0
𝑋̃.

2.4 Total Boundedness
Total boundedness is the notion that for every 𝜀 ∈ ℝ+ there is a subfinite set
that approximates the whole metric space in the sense that every element of
the metric space has a distance less than 𝜀 to some element of the subfinite
set. Total boundedness is stronger than boundedness as defined in the second
section and arguably the more important of the two concepts. The definitions
in this chapter are adopted from Petrakis [4].

Definition 31. Let 𝑋 be a set. We define the set of subfinite subsets and
the set of finite subsets:

𝒫subfin(𝑋) ≔ ⋃
𝑛∈ℕ

ℱ(ℕ≤𝑛, 𝑋)

𝒫fin(𝑋) ≔ ⋃
𝑛∈ℕ

Emb(ℕ≤𝑛, 𝑋)
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An element of 𝒫subfin(𝑋) or 𝒫fin(𝑋) is called a subfinite subset or finite subset
respectively.

Remark 7. In the above definition, subfinite and finite sets are not actually
sets, but rather functions. Intuitively, we identify each (sub-) finite set with
its image. Then the subfiniteness property is equivalent to the more intuitive
statement that a subfinite set is a subset of a finite set. In classical set theory
there is no difference between finite and subfinite sets, but in constructive set
theory a subset of a finite set need not be finite itself.

Definition 32. Let (𝑋, =𝑋, 𝑑) be a metric space and let 𝐧 ∈ ℕ such that
𝐴 ∶ ℕ≤𝐧 → 𝑋 is a subfinite metric subset of 𝑋. Let further 𝜀 > 0 and let
𝑓 ∶ 𝑋 → ℕ≤𝐧. Then we call (𝐴, ℎ) a subfinite 𝜀-approximation of 𝑋 iff for all
𝑥 ∈ 𝑋 we have that 𝑑 (𝑥, 𝐴(ℎ(𝑥))) < 𝜀.
If 𝜶 ∶ ℝ+ → 𝒫subfin(𝑋) × ⋃𝑛∈ℕ ℱ(𝑋, ℕ≤𝐧) is a function such that for all

𝜀 ∈ ℝ+ we have that 𝜶𝜀 ≔ (𝐴𝜀, ℎ𝜀) is a subfinite 𝜀-approximation for 𝑋, then
we call (𝑋, =𝑋, 𝑑) a totally bounded metric space with the modulus of total
boundedness 𝜶.

Lemma 4. Let (𝑋, =𝑋, 𝑑) be a totally bounded metric space with modulus of
total boundedness 𝜶. Let 𝐧 ∈ ℕ such that 𝜶1 ≔ (𝐴1, ℎ1) and 𝐴1 ∶ ℕ≤𝐧 → 𝑋
as well as ℎ1 ∶ 𝑋 → ℕ≤𝐧. 𝑋 is bounded with modulus of boundedness
∑𝐧

𝑘=1 𝑑 (𝐴1(0), 𝐴1(𝑘)) + 1 and 𝐴1(0).

Proof. First note that in any case 0 ∈ ℕ≤𝐧 and therefore 𝑋 is inhabited by
𝐴1(0). Then let 𝑥 ∈ 𝑋 arbitrarily. It holds that

𝑑 (𝐴1(0), 𝑥) ≤ 𝑑 (𝐴1(0), 𝐴1(ℎ1(𝑥))) + 𝑑 (𝐴1(ℎ1(𝑥)), 𝑥)

≤
𝐧

∑
𝑘=1

𝑑 (𝐴1(0), 𝐴1(𝑘)) + 1

therefore proving the statement.

Proposition 6. Let (𝑋, =𝑋, 𝑑𝑋) be a totally bounded metric space with
modulus of total boundedness 𝜶, (𝑌 , =𝑌, 𝑑𝑌) a metric space and 𝑓 ∶ 𝑋 → 𝑌 a
uniformly continuous function with modulus of uniform continuity 𝝎. Consider
the extensional subset 𝑓(𝑋) together with a modulus 𝐟−1 that assigns to
every 𝑦 ∈ 𝑓(𝑋) one preimage under 𝑓. For every 𝜀 > 0 let 𝐧 ∈ ℕ such
that for 𝜶𝝎( 1

2 𝜀) ≔ (𝐴𝝎( 1
2 𝜀), ℎ𝝎( 1

2 𝜀)) we have that 𝐴𝝎( 1
2 𝜀) ∶ ℕ≤𝐧 → 𝑋 and

ℎ𝝎( 1
2 𝜀)→𝑋 ∶ 𝑋 → ℕ≤𝐧. Then define 𝜶′

𝜀 ≔ (𝐴𝜀, ℎ𝜀) such that 𝐴′
𝜀 ≔ 𝑓 ∘ 𝐴𝝎( 1

2 𝜀)
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and for every 𝑦 ∈ 𝑌 it holds that ℎ′
𝜀(𝑦) ≔ ℎ𝝎( 1

2 𝜀)(𝐟−1(𝑦)). Then 𝑓(𝑋) is totally
bounded with modulus of total boundedness 𝜶′.

Proof. Let 𝑦 ∈ 𝑌. By construction we have that

𝑑𝑋 (𝐟−1(𝑦), 𝐴𝝎( 1
2 𝜀)(ℎ𝝎( 1

2 𝜀)(𝐟−1(𝑦)))) < 𝝎(1
2

𝜀)

and since 𝑓 is uniformly continuous with modulus of uniform continuity 𝝎,
we have that:

𝑑𝑌 (𝑦, 𝐴′
𝜀(ℎ′

𝜀(𝑦))) = 𝑑𝑌 (𝑓(𝐟−1(𝑦)), 𝑓(𝐴𝝎( 1
2 𝜀)(ℎ𝝎( 1

2 𝜀)(𝐟−1(𝑦)))))

≤ 1
2

𝜀 < 𝜀

Therefore (𝐴′
𝜀, ℎ′

𝜀) is an 𝜀-approximation of 𝑓(𝑋) and since 𝜀 was arbitrar-
ily chosen, we have that 𝑓(𝑋) is totally bounded with modulus of total
boundedness 𝜶′.

Proposition 7. Let 𝑋 be a totally bounded metric space with modulus of
total boundedness 𝜶, and 𝑓 ∶ 𝑋 → ℝ a uniformly continuous function with
modulus of uniform continuity 𝝎. Then sup 𝑓(𝑋) and inf 𝑓(𝑋) exist.

Proof. By proposition 6 𝑓(𝑋) is totally bounded with modulus of total bound-
edness 𝜶′. By lemma 4 𝑓(𝑋) is bounded with modulus of boundedness
𝑀 and 𝐴′

1(0). We prove the statement by utilizing the constructive least-
upper-bound-property of proposition 2 and therefore we need to check the
prerequisites.
Let 𝑥, 𝑦 ∈ ℝ such that 𝑥 < 𝑦 and define 𝛿 ≔ 1

4(𝑦 − 𝑥). Let further 𝑁 ∈ ℕ
such that 𝜶′

𝛿 ≔ (𝐴′
𝛿, ℎ′

𝛿) and 𝐴′
𝛿 ∶ ℕ≤𝑁 → 𝑓(𝑋) as well as ℎ′

𝛿 ∶ 𝑓(𝑋) → ℕ≤𝑁.
Then let 𝑛 ∈ ℕ≤𝑁 such that

𝐴′
𝛿(𝑛) > sup{𝐴′

𝛿(𝑗) | 𝑗 ∈ ℕ≤𝑁}

Apparently we have that 𝑥 < 𝑥 + 2𝛿 and by the constructive dichotomy of
corollary 1 we have that 𝑥 < 𝐴′

𝛿(𝑛) or 𝐴′
𝛿(𝑛) < 𝑥 + 2𝛿. In the former case, we

have the existence of some 𝑧 ∈ 𝑓(𝑋) such that 𝑥 < 𝑧. In the latter case, let
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𝑧 ∈ 𝑓(𝑋) arbitrarily. We have that

𝑧 ≤ 𝐴′
𝛿(ℎ′

𝛿(𝑧))⏟⏟⏟⏟⏟
<𝐴′

𝛿(𝑛)+𝛿

+ |𝑧 − 𝐴′
𝛿(ℎ′

𝛿(𝑧))|⏟⏟⏟⏟⏟⏟⏟
<𝛿

< 𝐴′
𝛿(𝑛)⏟

<𝑥+2𝛿

+2𝛿

< 𝑥 + 4𝛿 = 𝑦

i. e. 𝑦 is an upper bound for 𝑓(𝑋). Since all the prerequisites of 2 are met,
sup 𝑓(𝑋) exists. By considering the function −𝑓 it follows that

inf 𝑓(𝑋) = − sup−𝑓(𝑋)

exists.

Remark 8. Note that the latter part of the proof of proposition 7 works
for arbitrary totally bounded subsets of ℝ. Therefore every totally bounded
subset (𝐴, 𝜄) of ℝ has sup𝐴 and inf𝐴.

Proposition 8. Let (𝑋, =𝑋, 𝑑) be a metric space and (𝐴, 𝜄) a totally bounded
subset. Then 𝐴 is located.

Proof. Let 𝑥 ∈ 𝑋. The function 𝑑 (⋅, 𝐴) ∶ 𝐴 → ℝ≥0, 𝑦 ↦ 𝑑 (𝑥, 𝜄(𝑦)) is uni-
formly continuous. Since (𝐴, =𝐴, 𝑑𝐴) is a totally bounded metric space, by
corollary 7 its infimum, i. e. inf {𝑑 (𝑥, 𝜄(𝑦)) | 𝑦 ∈ 𝐴}, exists. This holds for all
𝑥 ∈ 𝑋, and therefore 𝐴 is located.

Proposition 9. Let (𝑋, =𝑋, 𝑑) be a totally bounded metric space with
modulus of total boundedness 𝜶 and (𝑌 , 𝜄) a located subset. For 𝜀 ∈ ℝ+

and 𝐧 ∈ ℕ such that for 𝜶1
3 𝜀 ≔ (𝐴1

3 𝜀, ℎ1
3 𝜀) we have that 𝐴𝜀 ∶ ℕ≤𝐧 → 𝑋 and

ℎ𝜀 ∶ 𝑋 → ℕ≤𝐧, define 𝜶′
𝜀 ≔ (𝐴′

𝜀, ℎ′
𝜀) by letting 𝐴′

𝜀 ∈ 𝑌 such that for every
𝑦 ∈ 𝑌 the following holds:

𝑑 (𝐴1
3 𝜀(ℎ1

3 𝜀(𝜄(𝑦))), 𝜄(𝐴′
𝜀(ℎ1

3 𝜀(𝜄(𝑦))))) < 1
3

𝜀 + 𝑑 (𝐴1
3 𝜀(ℎ1

3 𝜀(𝜄(𝑦))), 𝑌)

Furthermore define ℎ′
𝜀 ≔ ℎ1

3 𝜀 ∘ 𝜄. Then 𝑌 is totally bounded with modulus of
total boundedness 𝜶′.

Proof. First note that we are able to define 𝐴′
𝜀 for every 𝜀 because 𝑌 is located

and therefore the distance 𝑑 (𝐴1
3 𝜀(ℎ1

3 𝜀(𝜄(𝑦))), 𝑌) exists which enables us to
make our construction of 𝐴′

𝜀.
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Now let 𝜀 ∈ ℝ+ and 𝑦 ∈ 𝑌. The following holds:

𝑑𝑌 (𝑦, 𝐴′
𝜀(ℎ′

𝜀(𝑦))) = 𝑑 (𝜄(𝑦), 𝜄(𝐴′
𝜀(ℎ1

3 𝜀(𝜄(𝑦)))))

≤ 𝑑 (𝜄(𝑦), 𝐴1
3 𝜀(ℎ1

3 𝜀(𝜄(𝑦)))) + 𝑑 (𝐴1
3 𝜀(ℎ1

3 𝜀(𝜄(𝑦))), 𝜄(𝐴′
𝜀(ℎ1

3 𝜀(𝜄(𝑦))))

< 1
3

𝜀 + 1
3

𝜀 + 𝑑 (𝐴1
3 𝜀(ℎ1

3 𝜀(𝜄(𝑦))), 𝑌)

< 2
3

𝜀 + 1
3

𝜀 = 𝜀

Therefore (𝐴′
𝜀, ℎ′

𝜀) is an 𝜀-approximation of 𝑌 and since this holds for arbitrary
𝜀, 𝑌 is totally bounded with modulus of total boundedness 𝜶′.

2.5 Compactness
In this chapter we introduce the notion of compactness as well as related
concepts. They are essential for our later discussion about local compactness.

Definition 33. A metric space (𝑋, 𝑑) is compact iff it is totally bounded, i. e.
it has a modulus of total boundedness 𝜶, and complete.

The next theorem can be understood – impredicatively – as the statement,
that every compact metric space is the union of subfinitely many compact
subsets with arbitrarily small diameters. In the following, we first construct
such subsets and then prove the necessary properties.

Theorem 2. Let 𝑋 be a compact metric space with modulus of total
boundedness 𝜶 and 𝜀 ∈ ℝ+. Then there exists 𝑛 ∈ ℕ and compact met-
ric subsets (𝑋0, 𝜄0), … , (𝑋𝑛, 𝜄𝑛) inhabited by 𝑥1, … , 𝑥𝑛 respectively such that
for all 𝑗 ∈ ℕ≤𝑛 we have that (𝑋𝑗, 𝜄𝑗) ⊆ [𝑑𝑥𝑗

< 𝜀] and 𝑋 = ⋃𝑛
𝑗=1 𝑋𝑗, i. e.

(𝑋0, 𝜄0), … , (𝑋𝑛, 𝜄𝑛) is an 𝜀-covering of 𝑋.

Proof. Let 𝜀 ∈ ℝ+ and 𝑛 ∈ ℕ such that 𝜶3−2𝜀 ≔ (𝐴3−2𝜀, ℎ3−2𝜀) and
𝐴3−2𝜀 ∶ ℕ≤𝑛 → 𝑋 as well as ℎ3−2𝜀 ∶ 𝑋 → ℕ≤𝑛. In the following we inductively
construct for every 𝑗 ∈ ℕ≤𝑛 a sequence (𝐴𝑘

𝑗 )𝑘∈ℕ of subfinite subsets of 𝑋
corresponding (by remark 7) to the actual subsets ((𝐴𝑘

𝑗 , 𝜄𝑋
𝐴𝑘

𝑗
))𝑘∈ℕ respectively:

In the base case, we define the subfinite set 𝐴1
𝑗 ∶ ℕ≤0 → 𝑋 such that

𝐴1
𝑗 (0) ≔ 𝐴3−2𝜀(𝑗), which corresponds to the extensional subset 𝐴1

𝑗 with

𝐴1
𝑗 =𝒫(𝑋) {𝐴3−2𝜀(𝑗)}
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i. e. the sets 𝐴1
𝑗 are exactly the singleton sets consisting of the points of the

3−2𝜀 approximation of 𝑋.
In the inductive case, assume the set 𝐴𝑘

𝑗 has already been defined for some
𝑘 ∈ ℕ+. Then first let 𝜶3−(𝑘+1)−1𝜀 ≔ (𝐴3−(𝑘+1)−1𝜀, ℎ3−(𝑘+1)−1𝜀) and 𝑁 ∈ ℕ such
that
𝐴3−(𝑘+1)−1𝜀 ∶ ℕ≤𝑁 → 𝑋 and ℎ3−(𝑘+1)−1𝜀 ∶ 𝑋 → ℕ≤𝑁. Now let 𝑆, 𝑇 be two
disjoint extensional subsets of ℕ≤𝑁 such that 𝑆 ⊍ 𝑇 =𝒫(ℕ≤𝑁) ℕ≤𝑁 and the
following statements hold:

(i) if 𝑚 ∈ 𝑆, then 𝑑 (𝐴3−(𝑘+1)−1(𝑚), 𝑋𝑘
𝑗 ) < 3−𝑘𝜀

(ii) if 𝑚 ∈ 𝑇, then 1
23−𝑘𝜀 < 𝑑 (𝐴3−(𝑘+1)−1(𝑚), 𝑋𝑘

𝑗 )

This is possible since 𝐍 is finite and 1
23−𝑘𝜀 < 3−𝑘𝜀. Finally, define 𝐴𝑘+1

𝑗 as
an extension of 𝐴𝑘

𝑗 such that it corresponds to the extensional subset 𝐴𝑘+1
𝑗

with
𝐴𝑘+1

𝑗 =𝒫(𝑋) 𝐴𝑘
𝑗 ∪ {𝐴3−(𝑘+1)−1(𝑚) | 𝑚 ∈ 𝑆}

For every 𝑗 ∈ ℕ≤𝑛 and 𝑘 ∈ ℕ the following hold:

(i) 𝐴𝑘
𝑗 ⊆ 𝐴𝑘+1

𝑗 , i. e. the subsets form an increasing chain.

(ii) If 𝑥 ∈ 𝐴𝑘+1
𝑗 , then 𝑑 (𝑥, 𝐴𝑘

𝑗 ) < 3−𝑘𝜀.

(iii) For every 𝑥 ∈ 𝑋, if 𝑑 (𝑥, 𝐴𝑘
𝑗 ) < 3−𝑘−1𝜀, then 𝑑 (𝑥, 𝐴𝑘+1

𝑗 ) < 3−𝑖−2𝜀.

Obviously (i) holds per definition and the witness function id ∣𝐴̂𝑘+1
𝑗

, since
with each step elements are possibly added, but never removed. (ii) is
true by choice of 𝑆 in the above definition. For (iii), let 𝑥 ∈ 𝑋 such that
𝑑 (𝑥, 𝐴𝑘

𝑗 ) < 3−𝑘−1𝜀 and let 𝑚 ∈ ℕ≤𝑁 such that 𝑑 (𝑥, 𝐴3−𝑘−2𝜀(𝑚)) < 3−𝑘−2𝜀.
Then by triangle inequality, we have that

𝑑 (𝐴3−𝑘−2𝜀(𝑚), 𝐴𝑘
𝑗 ) ≤ 𝑑 (𝐴3−𝑘−2𝜀(𝑚), 𝑥) + 𝑑 (𝑥, 𝐴𝑘

𝑗 )
≤ 3−𝑘−2𝜀 + 3−𝑘−1𝜀

< 1
2

3−𝑘𝜀

and therefore, using 𝑆, 𝑇 from the inductive definition, 𝑚 ∉ 𝑇, which by
𝑆 ⊍ 𝑇 =𝒫(𝐍) 𝐍 implies 𝑚 ∈ 𝑆, i. e. 𝐴3−𝑘−2𝜀(𝑚) ∈ 𝐴𝑘+1

𝑗 . By definition of 𝑚 we
further have that

𝑑 (𝑥, 𝐴𝑘+1
𝑗 ) ≤ 𝑑 (𝑥, 𝐴3−𝑘−2𝜀(𝑚)) < 3−𝑘−2𝜀
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i. e. (iii) holds.
Now define 𝐴𝑗 ≔ ⋃𝑘∈ℕ 𝐴𝑘

𝑗 and 𝑋𝑗 ≔ 𝐴𝑗 where 𝐴𝑗 denotes the closure of
𝐴𝑗. We show that for all 𝑗 ∈ ℕ≤𝑛 the following statements hold:

(𝛼) 𝑋𝑗 is complete.

(𝛽) 𝑋𝑗 is totally bounded. Together with (𝛼) this means that 𝑋𝑗 is compact.

(𝛾) 𝑋𝑗 ⊆ [𝑑𝐴3−2𝜀(𝑗) ≤ 𝜀]

(𝛿) 𝑋 =𝒫(𝑋) ⋃𝑗∈ℕ≤𝑛 𝑋𝑗

A closed subset of a complete metric space, 𝑋𝑗 is itself complete. To show
the total boundedness of 𝑋𝑗, we first show the total boundedness of 𝐴𝑗. For
this, let 𝑦 ∈ 𝐴𝑗 and 𝑘 ∈ ℕ such that 𝑦 ∈ 𝐴𝑘

𝑗 . Let 𝑚 ∈ ℕ arbitrarily. By a
dichotomy of ℕ we have that 𝑘 ≤ 𝑚 or 𝑚 < 𝑘. In the following we look at
the different cases:
If 𝑘 ≤ 𝑚, then since 𝑦 ∈ 𝐴𝑘

𝑗 and 𝐴𝑘
𝑗 ⊆ 𝐴𝑚

𝑗 we have that 𝑦 ∈ 𝐴𝑚
𝑗

and therefore 𝑑 (𝑦, 𝐴𝑚
𝑗 ) = 0. Now assume that 𝑚 < 𝑘. Since by (ii) we

have that 𝑑 (𝑦, 𝐴𝑘−1
𝑗 ) < 3−𝑘𝜀, we have that there is 𝑦𝑘−1 ∈ 𝐴𝑘−1

𝑗 such that
𝑑 (𝑦, 𝑦𝑘−1) < 3−𝑘+1𝜀. Subsequently, we can analagously construct elements
𝑦𝑘−2 ∈ 𝐴𝑘−2

𝑗 , … , 𝑦𝑚 ∈ 𝐴𝑚
𝑗 such that for every 𝑖 ∈ ℕ with 𝑚 + 1 ≤ 𝑖 ≤ 𝑘 it

holds that 𝑑 (𝑦𝑘, 𝑦𝑘−1) < 3−𝑘+1𝜀. Therefore we have that

𝑑 (𝑦, 𝐴𝑚
𝑗 ) ≤ 𝑑 (𝑦𝑖, 𝑦𝑚) ≤

𝑖
∑

𝑘=𝑚+1
𝑑 (𝑦𝑘, 𝑦𝑘−1)

≤
𝑖

∑
𝑘=𝑚+1

3−𝑘+1𝜀 =
𝑖−1
∑
𝑘=𝑚

3−𝑘𝜀

≤
∞

∑
𝑘=𝑚

3−𝑘𝜀 = 1
2

3−𝑚+1𝜀

Thus 𝐴𝑚
𝑗 is a subfinite 1

23−𝑚+1𝜀 approximation of 𝐴𝑗. The total bound-
edness of 𝐴𝑗 is therefore witnessed by 𝜶𝑗 defined by 𝜶𝑗(𝛿) ≔ 𝐴𝑚

𝑗 where
3−𝑚+1 < 𝛿. The function 𝜶̄𝑗, 𝜶̄𝑗(𝛿) ≔ 𝜶𝑗(1

2𝛿) is a modulus of total bounded-
ness of 𝑋𝑗.
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For the sake of simplicity, in the following we define 𝑥𝑗 ≔ 𝜶3−2𝜀. To
prove (𝛾), first note, that for all 𝑘 ∈ ℕ and all 𝑦𝑘 ∈ 𝐴𝑘

𝑗 we have that
𝑑 (𝑥𝑗, 𝑦𝑘) < 2𝜀 ∑𝑘−1

𝑖=1 3−𝑖. We show this by induction:
The base case is obvious, since 𝑦1 = 𝑥𝑗 and therefore 𝑑 (𝑥𝑗, 𝑦1) = 0.

Now assume 𝑘 ∈ ℕ such that for all 𝑦𝑘 ∈ 𝐴𝑘
𝑗 the inequality holds and

let 𝑦𝑘+1 ∈ 𝐴𝑘+1
𝑗 . By (ii) we know that 𝑑 (𝑦𝑘+1, 𝐴𝑘

𝑗 ) < 3−𝑘𝜀 and therefore we
can choose 𝑦𝑘 ∈ 𝐴𝑘

𝑗 such that 𝑑 (𝑦𝑘+1, 𝑦𝑘) < 2 ⋅ 3−𝑘𝜀. Then it follows that

𝑑 (𝑦𝑘+1, 𝑥𝑗) ≤ 𝑑 (𝑦𝑘+1, 𝑦𝑘) + 𝑑 (𝑦𝑘, 𝑥𝑗) ≤ 2 ⋅ 3−𝑘𝜀 + 2𝜀
𝑘−1
∑
𝑖=1

3−𝑘𝜀 = 2𝜀
𝑘

∑
𝑖=1

3−𝑘

The proof now follows by induction. For any 𝑦 ∈ 𝑋𝑗 we now have that

𝑑 (𝑦, 𝑥𝑗) ≤ 2𝜀
∞

∑
𝑘=1

3−𝑘 = 𝜀

i. e. 𝑦 ∈ [𝑑𝑥𝑗
≤ 𝜀] and consequently 𝑋𝑗 ∈ [𝑑𝑥𝑗

≤ 𝜀] witnessed by the identity
function.

Lastly we need to prove (𝛿), while 𝑋 ⊆ ⋃𝑛
𝑗=1 𝑋𝑗 is obviously the case. For

the other inclusion, let 𝑥 ∈ 𝑋 arbitrarily and 𝑗 ∈ 𝐧 such that

𝑑 (𝜶3−2𝜀(𝑗), 𝑥) < 3−2𝜀

Note, that for every 𝑘 ∈ ℕ we have that 𝑑 (𝑥, 𝐴𝑘
𝑗 ) < 3−𝑘+1𝜀. This is the case

since in the base case

𝑑 (𝑥, 𝐴1
𝑗 ) = 𝑑 (𝑥, 𝜶3−2𝜀(𝑗)) < 3−2𝜀

and in the inductive case, if 𝑘 ∈ ℕ such that the inequality holds, we have that
directly by (iii), also 𝑑 (𝑥, 𝐴𝑘+1

𝑗 ) < 3−𝑖+2𝜀. Since 3−𝑘+1𝜀 becomes arbitrarily
close to 0 for high 𝑘, we can construct a series (𝑦𝑘)𝑘∈ℕ with 𝑦𝑘 ∈ 𝐴𝑘

𝑗 for every
𝑘 ∈ ℕ such that 𝑦𝑘 → 𝑥, i. e. 𝑥 ∈ 𝐴𝑗 = 𝑋𝑗 and subsequently 𝑥 ∈ ⋃𝑗∈𝐧 𝑋𝑗.

Definition 34. Let 𝛼 ∈ ℝ and let (𝛼𝑛)𝑛∈ℕ be a sequence of real numbers.
We call 𝛼 distinct from (𝛼𝑛)𝑛∈ℕ, iff for every 𝑛 ∈ ℕ we have that |𝛼 − 𝛼𝑛| > 0.

Now let 𝑃(𝛼) be a property of 𝛼. If 𝑃(𝛼) holds for every 𝛼 ∈ ℝ that is
distinct from (𝛼𝑛)𝑛∈ℕ, we say that 𝑃(𝛼) holds for all but countably many real
numbers. In this case we call (𝛼𝑛)𝑛∈ℕ the excluded sequence and every 𝛼 ∈ ℝ
distinct from (𝛼𝑛)𝑛∈ℕ admissible for 𝑃(𝛼).
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Theorem 3. Let 𝑋 be a compact metric space and 𝑓 ∶ 𝑋 → ℝ a continuous
function. For all but countably many 𝛼 > inf{𝑓(𝑥) | 𝑥 ∈ 𝑋} the set

𝑋𝛼 ≔ {𝑥 ∈ 𝑋 | 𝑓(𝑥) ≤ 𝛼}

is compact.

Proof. For every 𝑘 ∈ ℕ let 𝑁(𝑘) ∈ ℕ such that, by means of theorem 2
there is some 𝑁(𝑘) ∈ ℕ such that for every 𝑗 ∈ ℕ≤𝑁(𝑘) there is a compact
subset (𝑋𝑘

𝑗 , 𝜄𝑘
𝑗 ) inhabited by 𝑥𝑘

𝑗 , such that (𝑋𝑘
0 , 𝜄𝑘

0), … , (𝑋𝑘
𝑁(𝑘), 𝜄𝑘

𝑁(𝑘)) is a 𝑘−1

cover of 𝑋. Define further for every 𝑘 ∈ ℕ and 𝑗 ∈ ℕ≤𝑁(𝑘) the real numbers
𝑐𝑗𝑘 ≔ inf 𝑓(𝑋𝑘

𝑗 ) and let (𝛼𝑛)𝑛∈ℕ be a sequence containing all the 𝑐𝑗𝑘. This
is possible, as for every 𝑘 ∈ ℕ there are only a finite number of indices 𝑗 to
consider.
Now let 𝛼 ∈ ℝ such that 𝛼 > inf{𝑓(𝑥) | 𝑥 ∈ 𝑋} and 𝛼 is distinct from

(𝑎𝑛)𝑛∈ℕ. For every 𝑘 ∈ ℕ and 𝑗 ∈ ℕ≤𝑁(𝑘) we define the element 𝑥𝑘
𝑗 as 𝑥𝑘

𝑗 ,
except if 𝑐𝑗𝑘 < 𝛼, then we let 𝑥𝑘

𝑗 ∈ 𝑋𝑘
𝑗 such that 𝑓(𝑥𝑘

𝑗 ) < 𝛼. We then proceed
to define the set 𝐴𝛼 ≔ {𝑥𝑘

𝑗 | 𝑗 ∈ ℕ≤𝑁(𝑘) ∧ 𝑐𝑗𝑘 < 𝛼}.
For every 𝑘 ∈ ℕ we have that 𝐴𝛼 is a subfinite 𝑘−1 approximation to 𝑋𝛼:

Let 𝑥 ∈ 𝑋𝛼 and 𝑗 ∈ ℕ≤𝑁(𝑘) such that 𝑥 ∈ 𝑋𝑘
𝑗 . In any case we have that

𝑑 (𝑥, 𝑥𝑘
𝑗 ) ≤ diam𝑋𝑘

𝑗 < 𝑘−1, so it remains to show that in fact 𝑥𝑘
𝑗 ∈ 𝑋𝛼. For

this, we first have that 𝑐𝑗𝑘 ≤ 𝑓(𝑥) due to the definition of 𝑐𝑗𝑘 and 𝑓(𝑥) ≤ 𝛼
due to the fact that 𝑥 ∈ 𝑋𝛼. Since 𝛼 is distinct from (𝛼𝑛)𝑛∈ℕ, i. e. every 𝑐𝑗𝑘,
it follows that 𝑐𝑗𝑘 < 𝛼. Therefore by definition we have that 𝑓(𝑥𝑘

𝑗 ) < 𝛼 and
further 𝑥𝑘

𝑗 ∈ 𝑋𝛼. Altogether we have that 𝐴𝛼 is a subfinite 𝑘−1 approximation
and thus 𝑋𝛼 is totally bounded. 𝑋𝛼 is complete and therefore compact, since
it is closed.

2.6 Local Compactness
Local compactness is in principle the notion of the existence of compact sets
with arbitrarily large diameters. In this chapter we introduce the definition
of local compactness of [4] and compare it to the one of [5]. Afterwards we
define (Bishop) continuity and prove some important propositions.

Definition 35. Let (𝑋, 𝑑) be a metric space inhabited by 𝑥0 ∈ 𝑋. Let
further (𝐾𝑛, 𝜄𝑋

𝐾𝑛
)𝑛∈ℕ be a sequence of compact subsets of 𝑋 and 𝜿 ∶ ℕ → ℕ

be a function. We say that (𝑋, 𝑑) is locally compact with the modulus of
local compactness (𝑥0, (𝐾𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿) iff for every 𝑛 ∈ ℕ it holds true that
[𝑑𝑥0

≤ 𝑛] ⊆ 𝐾𝜿(𝑛).
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Remark 9. The definition of local compactness is equivalent to the impred-
icative property used by Bishop and Bridges [1], that every bounded subset is
contained by a compact subset.

Remark 10. In his work, Mandelkern [5] uses a different definition of local
compactness in a constructive setting that makes use of so-called uniform
neighbourhoods. For two sets 𝐹, 𝐺, we say that 𝐺 is a uniform neighbourhood
of 𝐹, if for some 𝜀 > 0 the 𝜀 neighbourhood of 𝐹 is a subset of 𝐺. He then
proceeds to define term locally compact as follows:

Definition 36 (local compactness, Mandelkern [5]). A metric space 𝑋 is
called locally compact, iff there is some sequence (𝐻𝑘)𝑘∈ℕ of compact subsets
of 𝑋 such for every 𝑘 ∈ ℕ we have that 𝐻𝑘+1 is a uniform neighbourhood of
𝐻𝑘 as well as that 𝑋 = ⋃𝑘∈ℕ 𝐻𝑘.

Unlike definition 35 and similar to the definition of Bishop and Bridges [1],
the definition of Mandelkern [5] is impredicative as it requires quantification
over the powerset. Another difference is that it requires an ascending chain of
compact subsets, while the modulus sequence in Definition 35 is not necessarily
ordered.
While still an interesting approach, Mandelkern [5] did not offer insights

into how one could develop a theory of integration in this framework and to
the author’s knowledge there have not yet been any other mathematicians
working on this matter.

Example. ℝ equipped with the standard metric 𝑑𝜖 given by the absolute
value is locally compact, i. e. (ℝ, 𝑑𝜖) is a locally compact metric space with
the modulus of local compactness (0, ([𝑑0 ≤ 𝑛])𝑛∈ℕ, id) is a locally compact
metric space.

Proposition 10. Let (𝑋, 𝑑) be a locally compact metric space with modulus
of local compactness (𝑥1, (𝐴𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿′). If 𝑥1 ∈ 𝑋, then there is some 𝜿′ ∶
ℕ → ℕ such that (𝑥1, (𝐴𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿′) is also a modulus of local compactness
for 𝑋.

Proof. We define another function 𝜿′ ∶ ℕ → ℕ as follows:

𝜿′(𝑛) ≔ 𝜿(𝐾𝑛+𝑑(𝑥0,𝑥1))

where 𝒦_𝑛 + 𝑑 (𝑥0, 𝑥1) denotes the canonical bound of 𝑛 + 𝑑 (𝑥0, 𝑥1). Now
let 𝑛 ∈ ℕ. The basic idea is that the ball [𝑑𝑥1

< 𝑛] is contained in the ball
[𝑑𝑥0

≤ 𝑛+𝑑 (𝑥0, 𝑥1)] which is itself contained in the compact set 𝐴𝜿(𝐾𝑛+𝑑(𝑥0,𝑥1)):
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To prove this, let 𝑥 ∈ [𝑑𝑥1
≤ 𝑛] and note that:

𝑑 (𝑥, 𝑥0) ≤ 𝑑 (𝑥, 𝑥1) + 𝑑 (𝑥1, 𝑥0) ≤ 𝑛 + 𝑑 (𝑥0, 𝑥1) < 𝐾𝑛+𝑑(𝑥0,𝑥1)

i. e. [𝑑𝑥1
≤ 𝑛] ⊆ 𝐴𝜿′(𝑛). Therefore (𝑥1, (𝐴𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿′) is also a modulus of

local compactness for 𝑋.

Definition 37. Let (𝑋, 𝑑) be a locally compact metric space with modulus
of local compactness (𝑥0, (𝐾𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿), (𝑌 , 𝑑𝑌) another metric space and
𝑓 ∶ 𝑋 → 𝑌. Let further 𝝎𝑛 ∶ ℝ+ → ℝ+ be a function for every 𝑛 ∈ ℕ. Then
we say that 𝑓) is (Bishop) continuous with modulus of (Bishop) continuity
(𝝎𝑛)𝑛∈ℕ iff for all 𝑛 ∈ ℕ we have that 𝑓 is uniformly continuous with modulus
of uniform continuity 𝝎𝑛. We also define the set 𝐶(𝑋, 𝑌 ) of all (Bishop)
continuous functions from 𝑋 to 𝑌. It is equipped with the equality =𝐶(𝑋,𝑌 ).
We also define 𝐶(𝑋) ≔ 𝐶(𝑋, ℝ).

Proposition 11. Let (𝑋, 𝑑) be a metric space and (𝐴, 𝜄) a locally compact
metric subspace with modulus of local compactness (𝑎0, (𝐾𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿). Then
𝐴 is located.

Proof. For every 𝑛 ∈ ℕ we have that 𝐾𝜿(𝑛) is compact, i. e. totally bounded
and therefore by 8 it is located. Then let 𝑥 ∈ 𝑋 and 𝑛 ∈ ℕ such that
𝑛 > 2𝑑 (𝑥, 𝜄(𝑎0)). We show that 𝑑 (𝑥, 𝐴) exists by proving that it is equal to
𝑑 (𝑥, 𝐾𝜿(𝑛)):
The inequality 𝑑 (𝑥, 𝐴) ≤ 𝑑 (𝑥, 𝐾𝜿(𝑛)) is trivially valid (even without the

above restriction of 𝑛), so it remains to show that 𝑑 (𝑥, 𝐾𝜿(𝑛)) ≤ 𝑑 (𝑥, 𝐴). By
definition of 𝑛 we have that

𝑑 (𝑥, 𝐾𝜿(𝑛)) ≤ 𝑑 (𝑥, 𝜄(𝑎0)) = 2𝑑 (𝑥, 𝜄(𝑎0)) − 𝑑 (𝑥, 𝜄(𝑎0)) < 𝑛 − 𝑑 (𝑥, 𝜄(𝑎0))

By corollary 1 (the constructive dichotomy) we have that for all 𝑎 ∈ 𝐴 at
least one of the following two cases holds:

(i) 𝑑 (𝑥, 𝐾𝜿(𝑛)) < 𝑑 (𝑥, 𝜄(𝑎)), i. e. especially 𝑑 (𝑥, 𝐾𝜿(𝑛)) ≤ 𝑑 (𝑥, 𝜄(𝑎)) holds.

(ii) 𝑑 (𝑥, 𝜄(𝑎)) < 𝑛 − 𝑑 (𝑥, 𝜄(𝑎0)). In this case we have by triangle inequality
and definition of 𝐾𝜿(𝑛) that

𝑑 (𝑎, 𝑎0) ≤ 𝑑 (𝜄(𝑎), 𝑥) + 𝑑 (𝑥, 𝜄(𝑎0)) < 𝑛 − 𝑑 (𝑥, 𝜄(𝑎0)) + 𝑑 (𝑥, 𝜄(𝑎0)) = 𝑛

i. e. 𝑎 ∈ [𝑑𝑎0
≤ 𝑛] ⊆ 𝐾𝜿(𝑛). Therefore 𝑑 (𝑥, 𝐾𝜿(𝑛)) ≤ 𝑑 (𝑥, 𝜄(𝑎)) as well.
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Thus for all 𝑎 ∈ 𝐴 𝑑 (𝑥, 𝐾𝜿(𝑛)) ≤ 𝑑 (𝑥, 𝜄(𝑎)) holds, which in turn implies that
𝑑 (𝑥, 𝐾𝜿(𝑛)) ≤ 𝑑 (𝑥, 𝐴).

Proposition 12. Let (𝑋, 𝑑) be locally compact metric space with modulus
of local compactness (𝑥0, (𝐾𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿̃) and (𝐴, 𝜄𝑋

𝐴) a closed and located
subset. Then 𝐴 is locally compact with some modulus of local compactness
(𝑥′

0, (𝐾′
𝑛, 𝜄′

𝑛)𝑛∈ℕ, 𝜿′).

Proof. Since 𝐴 is located, it is inhabited by some 𝑎0 ∈ 𝐴. In light of 10,
there is 𝜿 ∶ ℕ → ℕ such that 𝑋 is locally compact with modulus of local
compactness (𝑥0, (𝐾𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿) where 𝑥0 ≔ 𝜄(𝑎0). For every 𝛼 ∈ ℝ+ define
the extensional subset

𝑋𝛼 ≔ [𝑑𝜄(𝑎0) ≤ 𝛼] = {𝑥 ∈ 𝑋 | 𝑑 (𝑥, 𝜄(𝑎0)) ≤ 𝛼} ⊆ 𝑋

In the following we construct a sequence of sets (𝐾′
𝑛, 𝜄′

𝑛)𝑛∈ℕ such that 𝐴 is
locally compact with modulus of local compactness (𝑎0, (𝐾′

𝑛, 𝜄′
𝑛)𝑛∈ℕ, id).

At first let 𝑐 ∈ [𝑛, 𝑛 + 1] such that 𝑋4𝑐 is compact. This is possible due
to the fact that 𝑋4𝑐 ⊆ 𝐾𝜿(4𝑛+4), 𝐾𝜿(4𝑛+4) is a compact subset and by the
use of 3. By construction we have that [𝑑𝜄(𝑎0) ≤ 𝑛] ⊆ 𝑋4𝑐 and therefore
[𝑑𝑎0

≤ 𝑛] ⊆ 𝑋4𝑐 ∩ 𝐴. Now define 𝑀 ≔ sup{𝑑 (𝑥, 𝜄(𝑎0)) | 𝑥 ∈ 𝑋4𝑐}. Since
𝑐 < 2𝑐 we have the constructive dichotomy of corollary 1 that states that at
least one of the cases 𝑐 < 𝑀 or 𝑀 < 2𝑐 holds.

Case 𝑀 < 2𝑐: First note that, if 𝑥 ∈ 𝑋 such that 𝑑 (𝑥, 𝜄(𝑎0)) < 2𝑐 we have
that 𝑑 (𝑥, 𝑋4𝑐 ∩ 𝐴) exists and 𝑑 (𝑥, 𝑋4𝑐 ∩ 𝐴) = 𝑑 (𝑥, 𝐴). This is due to the
fact, that for every 𝑎 ∈ 𝐴 such that 𝑑 (𝑥, 𝜄(𝑎)) < 𝑑 (𝑥, 𝐴) + (2𝑐 − 𝑑 (𝑥, 𝜄(𝑎0)))
we have that

𝑑 (𝑎, 𝑎0) ≤ 𝑑 (𝜄(𝑎), 𝑥) + 𝑑 (𝑥, 𝜄(𝑎0))
≤ 𝑑 (𝑥, 𝐴) + 2𝑐 ≤ 𝑑 (𝑥, 𝜄(𝑎0)) + 2𝑐 < 4𝑐 (2.6.A)

i. e. 𝑎 ∈ 𝑋4𝑐 ∩ 𝐴. If 𝑀 < 2𝑐, then consequently we have 𝑑 (𝑥, 𝜄(𝑎0)) < 2𝑐
for every 𝑥 ∈ 𝑋4𝑐. Therefore 𝑑 (𝑥, 𝑋4𝑐 ∩ 𝐴) exists for every 𝑥 ∈ 𝑋4𝑐 meaning
𝑋4𝑐 ∩ 𝐴 is located in 𝑋4𝑐. A located subset of the totally bounded set 𝑋4𝑐,
by 9, it is also totally bounded; and a closed subset of the complete set 𝑋4𝑐
it is complete as well. Together 𝑋4𝑐 ∩ 𝑌 is compact. In this case define
𝐾𝑛 ≔ 𝑋4𝑐 ∩ 𝑌.
Case 𝑐 < 𝑀: Here we can find some 𝑟 ∈ (𝑐, 2𝑐) such that the set

𝑉 ≔ {𝑥 ∈ 𝑋 | 𝑟 ≤ 𝑑 (𝑥, 𝜄(𝑎0)) ≤ 4𝑐}
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is compact by an argument similar to theorem 3. Then we define the set
𝑈 ≔ 𝑉 ∪ (𝑋4𝑐 ∩ 𝐴). We now show that 𝑈 is located in 𝑋4𝑐. So let 𝑥 ∈
𝑋4𝑐 arbitrarily. Due to 𝑟 < 2𝑐 we have the dichotomy 𝑟 < 𝑑 (𝑥, 𝜄(𝑎0)) or
𝑑 (𝑥, 𝜄(𝑎0)) < 2𝑐.
If 𝑟 < 𝑑 (𝑥, 𝜄(𝑎0)), then we have that 𝑥 ∈ 𝑉 and therefore 𝑑 (𝑥, 𝑈). If on

the other hand 𝑑 (𝑥, 𝜄(𝑎0)) < 2𝑐, then by the reasoning involving the equation
2.6.A we know that 𝑑 (𝑥, 𝑋4𝑐 ∩ 𝐴) exists. Then

𝑑 (𝑥, 𝑈) = min{𝑑 (𝑥, 𝑉) , 𝑑 (𝑥, 𝑋4𝑐 ∩ 𝐴)}

due to the general fact that for any two located subsets 𝑀0, 𝑀1 also the
subset 𝑀0 ∩ 𝑀1 is located with 𝑑 (𝑥, 𝑀0 ∩ 𝑀1) = min{𝑑 (𝑥, 𝑀1) , 𝑑 (𝑥, 𝑀2)}.
Therefore 𝑈 is located in 𝑋4𝑐 and again by 9 totally bounded. Then 𝑈 is also
totally bounded and additionally it is complete and together compact. In this
case define 𝐾𝑛 ≔ 𝑈.
Concluding, by our definitions, 𝐴 is locally compact with modulus of

local compactness (𝑥′
0, (𝐾′

𝑛, 𝜄′
𝑛)𝑛∈ℕ, 𝜿′) as for every 𝑛 ∈ ℕ it holds true that

[𝑑𝑎0
≤ 𝑛] ⊆ 𝐾𝑛 and each of the 𝐾𝑛 are compact sets.
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3 Integration Theory

In this chapter we discuss the theory of integration spaces presented in chapter
6, section 1 of Bishop and Bridges [1]. While in Classical Mathematics one
uses primarily total functions in the context of integration, the approach
of Bishop and Bridges [1] is to utilize partial functions instead. However,
the definition of an integration space of Bishop and Bridges [1] makes use
of a “subset of 𝔉(𝑋)”, i. e. a subset of the set of partial functions. Since
the membership condition of 𝔉(𝑋) requires quantification over the universe
𝕍0, it is a class and as such the original formulation of Bishop and Bridges
[1] is impredicative. We use our previously made definitions as well as an
amendment to the definition of an integration space as presented in Petrakis
[4] in order to remove this impredicativity. Again, the chapter follows the
general outline and proofs of the respective chapter of Bishop and Bridges [1].

3.1 Functions with Compact Support
The continuous functions with compact support play an important role in the
construction of our integration theory. In this section we first define the set
𝐶supp(𝑋) and also the corresponding set Supp(𝑋) of partial functions.
Definition 38. Let (𝑋, 𝑑) be a metric space, (𝑆, 𝜄𝑋

𝑆 ) a located metric subset
of 𝑋 and 𝑓 ∶ 𝑋 → ℝ. 𝑆 is called a support of 𝑓, iff for all 𝑥 ∈ 𝑋 such that
𝑑 (𝑥, 𝑆) > 0 we have that 𝑓(𝑥) = 0.
Let (𝑋, 𝑑) be a locally compact metric space with modulus of local com-

pactness (𝑥0, (𝐾𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿), 𝑓 ∈ 𝐶(𝑋) and 𝐧 ∈ ℕ. If 𝐧 is such that 𝐾𝐧 is
a support of 𝑓, we call 𝑓 a function with compact support with modulus of
compact support 𝐧. We then define the set 𝐶supp(𝑋) of exactly the Bishop
continuous functions with compact support and equip it with the equality
=𝐶supp(𝑋) derived from the equality =ℱ(𝑋). We call the elements of 𝐶supp(𝑋)
test functions.
Proposition 13. Let (𝑋, 𝑑) be a locally compact metric space with modulus
of local compactness (𝑥0, (𝐴𝑛, 𝜄𝐴𝑛

)𝑛∈ℕ, 𝜿), (𝐾, 𝜄) a compact subset of 𝑋 and
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𝜀 ∈ ℝ+. Then there is 𝑁 ∈ ℕ and for every 𝑗 ∈ ℕ≤𝑁 a non-negative test
function 𝑓𝑗 ∈ 𝐶supp(𝑋) and a compact subset (𝐾𝑗, 𝜄𝑗) with diam(𝐾𝑗) < 𝜀
that is a support for 𝑓𝑗 such that ∑𝑁

𝑘=0 𝑓𝑘 ≤ 1 and ∑𝑁
𝑘=0 𝑓𝑘(𝜄𝑘(𝑥)) = 1 for all

𝑥 ∈ 𝐾.

Proof. Since 𝐾 is a compact set, Theorem 2 provides us with 𝑁 ∈ ℕ and
for every 𝑗 ∈ ℕ≤𝑁 a compact subset (𝐾𝑗, 𝜄𝑗) inhabited by some 𝑦𝑗 with
diam(𝐾𝑗) < 𝜀

2 such that (𝐾𝑗)𝑗∈ℕ≤𝑁 is a subfinite cover of 𝐾. Then for
every 𝑗 ∈ ℕ≤𝑁 by Theorem 3 let 𝛼 ∈ (0, 𝜀

4) such that 𝑆𝑗 ≔ [𝑑𝐾𝑗
≤ 𝛼] is a

compact subset of 𝑋 and define the test function 𝑔𝑗 ∈ 𝐶supp(𝑋) by letting
𝑔𝑗(𝑥) ≔ max {0, 1 − 𝛼−1𝑑 (𝑥, 𝐾𝑗)}.
If for 𝑥 ∈ 𝑋 we have that 𝑔𝑗(𝑥) > 0, then it holds that

𝑔𝑗(𝑥) = 1 − 𝛼−1𝑑 (𝑥, 𝐾𝑗) > 0

or equivalently that 𝑑 (𝑥, 𝐾𝑗) < 𝛼 and therefore 𝑥 ∈ 𝑆𝑗, i. e. 𝑆𝑗 is a compact
support of 𝑓𝑗. For every 𝑥 ∈ 𝑆𝑗 we have that

𝑑 (𝑥, 𝑥𝑗) ≤ sup {𝑑 (𝑦, 𝑥𝑗) | 𝑦 ∈ 𝐾𝑗} + 𝑑 (𝑥, 𝐾𝑗) ≤ 𝜀
4

+ 𝛼 < 𝜀
2

so every 𝑆𝑗 has a diameter of strictly less than 𝜀. For every 𝑗 ∈ ℕ≤𝑁 we have
that 𝑆𝑗 is also a compact support for the functions 𝑓𝑗 defined by:

𝑓𝑗 ≔
𝑔𝑗

max(1, ∑𝑛
𝑘=1 𝑔𝑘)

Therefore 𝑓 is a test function with modulus of compact support 𝐾𝑑(𝑥0,𝑦𝑗)+ 𝜀
2
.

It remains to show that the functions 𝑓0, … , 𝑓𝑛 have the desired properties.
For this let 𝑥 ∈ 𝑋. Then

𝑁
∑
𝑘=0

𝑓𝑘(𝑥) =
∑𝑁

𝑘=0 𝑔𝑘(𝑥)

max(1, ∑𝑁
𝑘=0 𝑔𝑘(𝑥))

≤ 1

If 𝑥 ∈ 𝐾𝑗 for some 𝑗 ∈ ℕ≤𝑁, then ∑𝑁
𝑘=0 𝑔𝑘(𝑥) ≥ 1, i. e. we have that

max(1, ∑𝑁
𝑘=0 𝑔𝑘(𝑥)) = ∑𝑁

𝑘=0 𝑔𝑘(𝑥), and therefore

𝑁
∑
𝑘=0

𝑓𝑘(𝑥) =
∑𝑁

𝑘=0 𝑔𝑘(𝑥)

max(1, ∑𝑁
𝑘=0 𝑔𝑘(𝑥))

=
∑𝑁

𝑘=0 𝑔𝑘(𝑥)

∑𝑁
𝑘=0 𝑔𝑘(𝑥)

= 1
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Definition 39. Let (𝑋, 𝑑) be a locally compact metric space with modulus of
local compactness (𝑥0, (𝐾𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿). In analogy to proposition 1 we define
the 𝐶supp(𝑋)-set of partial functions from 𝑋 to ℝ

Supp(𝑋) ≔ (𝜆0, ℰ𝐶supp(𝑋), 𝜆1, 𝒫ℝ)

from the set 𝐶supp(𝑋) in the following way:

(i) 𝜆0 ∶ 𝐶supp(𝑋) ⇝ 𝕍0 is the constant non-dependent assignment routine
given by 𝜆0(𝑓) ≔ 𝑋 for all 𝑓 ∈ 𝐶supp(𝑋)

(ii) ℰ𝐶supp(𝑋) ∶
c

𝑖∈𝐼 ℱ(𝑋, 𝑋) is the constant dependent operation defined by
ℰ𝐶supp(𝑋)(𝑓) ≔ id𝑋 for all 𝑓 ∈ 𝐶supp(𝑋)

(iii) 𝜆1 ∶
c

(𝑓,𝑔)∈𝐷(𝐶supp(𝑋)) ℱ(𝑋, 𝑋) is the constant dependent operation given
by 𝜆1(𝑓, 𝑔) ≔ id𝑋 for all 𝑓, 𝑔 ∈ 𝐶supp(𝑋) with 𝑓 =𝐶supp(𝑋) 𝑔

(iv) 𝒫ℝ ∶
c

𝑓∈𝐶supp(𝑋) is the dependent operation defined by 𝒫ℝ(𝑓) ≔ 𝑓 for
every 𝑓 ∈ 𝐶supp(𝑋).

3.2 The Integration Space of a Locally
Compact Metric Space

In the following section we define the notion of an integration space using the
definition of Petrakis [4] with minor changes regarding the use of moduli. An
integration space consists of a locally compact metric space, an indexed set of
partial functions and a function ∫ which we call the integral. Due to the nature
of sets of partial functions, it is much more convenient to define the integral on
the index set rather than the actual set of partial functions. For this reason,
Petrakis [4] even calls the resulting structure a “pre-integration space” rather
than an “integration space”. Note however, that this definition can easily be
pushed back onto the set of partial functions itself, albeit requiring rather
cumbersome notation. To simplify notation further, we also define some of
the most important arithmetic operations directly on the index set in the
obvious way. After the definition of an integration space, we introduce the
definition of a positive measure and after proving some useful statements, we
state and prove the main result of this thesis, the fact that Supp(𝑋) together
with any positive measure constitutes an integration space.
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Definition 40. Let 𝑋 be a set. We define some arithmetic operations on
𝔉(𝑋). Therefore let 𝑓 ≔ (𝐴𝑓, 𝜄𝑓, 𝑓) and 𝑔 ≔ (𝐴𝑔, 𝜄𝑔, 𝑓) be partial functions
from 𝑋 to ℝ. We define:

𝑓 ○ 𝑔 ≔ (𝐴𝑓 ∩ 𝐴𝑔, 𝜄𝑋
𝐴𝑓∩𝐴𝑔

, 𝑓 ○ 𝑔)

where ○ is one of +, −, ⋅ and ∧. We also define the absolute value as well as
the scalar multiplication with some 𝛼 ∈ ℝ as follows:

|𝑓| ≔ (𝐴𝑓, 𝜄𝑓, |𝑓|)
𝛼 ⋅ 𝑓 ≔ (𝐴𝑓, 𝜄𝑓, 𝛼 ⋅ 𝑓)

Definition 41. Let 𝑋 and 𝐼 be sets, and let (𝜆0, ℰ, 𝜆1, 𝒫) be an 𝐼-set of
partial functions from 𝑋 to ℝ. We now use definition 40 to define arithmetic
operations on the index set 𝐼. For 𝑖, 𝑗, 𝑘 ∈ 𝐼 such that

(𝜆0(𝑖), ℰ𝑖, 𝒫𝑖) ○ (𝜆0(𝑗), ℰ𝑗, 𝒫𝑗) =𝔉(𝑋) (𝜆0(𝑘), ℰ𝑘, 𝒫𝑘)

we define 𝑖 ○ 𝑗 ≔ 𝑘, where ○ is one of +, −, ⋅ and ∧. Additionally, if 𝑘 is such
that

|(𝜆0(𝑖), ℰ𝑖, 𝒫𝑖)| =𝔉(𝑋) (𝜆0(𝑘), ℰ𝑘, 𝒫𝑘)

then we define |𝑖| ≔ 𝑘. If 𝛼 ∈ ℝ and 𝑘 is such that

𝛼 ⋅ (𝜆0(𝑖), ℰ𝑖, 𝒫𝑖) =𝔉(𝑋) (𝜆0(𝑘), ℰ𝑘, 𝒫𝑘)

we define 𝛼 ⋅ 𝑖 ≔ 𝑘.

Definition 42. Let (𝑋, 𝑑) be a locally compact metric space, (𝐼, =𝐼) a set,
𝐿 ≔ (𝜆0, ℰ, 𝜆1, 𝒫) an 𝐼-set of partial functions from 𝑋 to ℝ and ∫ ∶ 𝐼 → ℝ a
function. Consider additionally the function 𝐜 ∶ 𝐼 × ℱ(ℕ, 𝐼) → 𝑋 and 𝐩 ∈ 𝐼.
Then we call (𝑋, 𝐼, 𝐿, ∫) an integration space with the modulus (𝐜, 𝐩) iff the
following properties hold true:

(i) For all 𝑖, 𝑗 ∈ 𝐼 and 𝛼, 𝛽 ∈ ℝ, there exists 𝑘 ∈ 𝐼 such that 𝛼 ⋅ 𝑖 + 𝛽 ⋅ 𝑗 =𝐼 𝑘
and ∫ 𝑘 = 𝛼 ∫ 𝑖 + 𝛽 ∫ 𝑗. Also there exists 𝑙 ∈ 𝐼 such that |𝑖| =𝐼 𝑙 as well
as 𝑚 ∈ 𝐼 such that 𝑓 ∧ 1 =𝐼 𝑚, where 1 denotes the constant function 1.

(ii) If for 𝑖 ∈ 𝐼 and a sequence (𝑖𝑛)𝑛∈ℕ of elements of 𝐼 the following statement
is holds: If for all 𝑛 ∈ ℕ and all 𝑥 ∈ 𝜆0(𝑖𝑛) where 𝒫𝑖𝑛

(𝑥) is non-negative
and it holds that ∑𝑛∈ℕ ∫ 𝑖𝑛 converges as well as ∑𝑛∈ℕ ∫ 𝑖𝑛 < ∫ 𝑖, then
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∑𝑛∈ℕ 𝒫𝑖𝑛
(𝐜(𝑖, (𝑖𝑛)𝑛∈ℕ)) converges and

∑
𝑛∈ℕ

𝒫𝑖𝑛
(𝐜(𝑖, (𝑖𝑛)𝑛∈ℕ)) < 𝒫𝑖(𝐜(𝑖, (𝑖𝑛)𝑛∈ℕ))

(iii) ∫ 𝐩 = 1

(iv) For 𝑖 ∈ 𝐼 and 𝑚 ∈ ℕ there exist 𝑗, 𝑘 ∈ 𝐼 such that 𝑖 ∧ 𝑚 =𝐼 𝑗 as well as
|𝑖|∧𝑚−1 =𝐼 𝑘, where 𝑚 and 𝑚−1 denote the respective constant functions
and it holds true that lim𝑛→∞ ∫(𝑖 ∧ 𝑛) = ∫ 𝑖 as well as lim𝑛→∞ ∫(|𝑖| ∧
𝑛−1) = 0.

Remark 11. Beside the use of total functions, definition 42 differs from
Bishop and Bridges [1] in that we explicitly use moduli both for the point of
𝑋 as well as the function with integral 1.

Definition 43. Let 𝑋 be a locally compact metric space, 𝜇 ∶ 𝐶supp(𝑋) → ℝ
a linear map and 𝐮 ∈ 𝐶supp(𝑋). We call 𝜇 a positive measure with modulus
𝐮 iff 𝜇(𝐮) = 1 and for all non-negative 𝑓 ∈ 𝐶supp(𝑋) we have that 𝜇(𝑓) ≥ 0.

The above definition is equivalent to the definition of Bishop and Bridges
[1], where instead the existence of some 𝑓 ∈ 𝐶supp(𝑋) such that 𝜇(𝑓) > 0 is
required. To arrive at definition 43, we merely need to define 𝐮 ≔ 𝑓

𝜇(𝑓) . By
linearity it follows that 𝜇(𝐮) = 1.

Lemma 5. Let (𝑋, 𝑑) be a locally compact metric space with modulus of
local compactness (𝑥0, (𝐴𝑛, 𝜄𝐴𝑛

)𝑛∈ℕ, 𝜿), 𝜇 a positive measure on 𝑋, 𝑓 a test
function with modulus of compact support 𝐧 and (𝑓𝑛)𝑛∈ℕ a sequence of
non-negative test functions such that ∑𝑛∈ℕ ∫ 𝑓𝑛𝑑𝜇 converges and

∑
𝑛∈ℕ

∫ 𝑓𝑛𝑑𝜇 < ∫ 𝑓𝑑𝜇

If 𝜀 ∈ ℝ+, then there is a nonnegative test function 𝑔 and a compact subset
𝐾 of 𝑋 with diam(𝐾) < 𝜀 that is a support for 𝑔, ∑𝑛∈ℕ ∫ 𝑓𝑛𝑔𝑑𝜇 converges
and ∑𝑛∈ℕ ∫ 𝑓𝑛𝑔𝑑𝜇 < ∫ 𝑓𝑔𝑑𝜇.

Proof. Let 𝜀 ∈ ℝ+. By proposition 13 there is 𝑁 ∈ ℕ and for every 𝑗 ∈ ℕ≤𝑁 a
non-negative test function 𝑔𝑗 ∈ 𝐶supp(𝑋) as well as a compact subset (𝐾𝑗, 𝜄𝑗)
of 𝑋 with diam(𝐾𝑗) < 𝜀 that is a support for 𝑔𝑗 such that

𝑁
∑
𝑘=0

𝑔𝑘 ≤ 1 (3.2.A)
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𝑁
∑
𝑘=0

𝑔𝑘(𝜄𝐴𝐧
(𝑥)) = 1 (3.2.B)

for every 𝑥 ∈ 𝐴𝐧. Due to the convergence of ∑𝑛∈ℕ ∫ 𝑓𝑛𝑑𝜇, by 3.2.B we have
that ∑𝑁

𝑗=0 ∑𝑛∈ℕ ∫ 𝑓𝑛𝑔𝑗𝑑𝜇 converges as well and

𝑁
∑
𝑗=0

∑
𝑛∈ℕ

∫ 𝑓𝑛𝑔𝑗𝑑𝜇
(3.2.B)

≤ ∑
𝑛∈ℕ

∫ 𝑓𝑛𝑑𝜇 < ∫ 𝑓𝑑𝜇
(3.2.B)

=
𝑁

∑
𝑗=0

∫ 𝑓𝑔𝑗𝑑𝜇

Therefore there is some 𝑗 ∈ ℕ≤𝑁 such that ∑𝑛∈ℕ ∫ 𝑓𝑛𝑔𝑗𝑑𝜇 converges and

∑
𝑛∈ℕ

∫ 𝑓𝑛𝑔𝑗𝑑𝜇 < ∫ 𝑓𝑔𝑗𝑑𝜇

Finally, letting 𝑔 ≔ 𝑔𝑘 completes the proof.

Lemma 6. Let (𝑋, 𝑑) be a locally compact metric space with modulus of
local compactness (𝑥0, (𝐾𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿), 𝑓 ∈ 𝐶supp(𝑋) a test function with
modulus of compact support 𝐧 ∈ ℕ. If ∫ 𝑓𝑑𝜇 > 0, then there is 𝑥 ∈ 𝐾 such
that 𝑓(𝑥) > 0. Since by

Proof. Let 𝑀 ≔ sup {|𝑓(𝑥)| | 𝑥 ∈ 𝑋}. We instead prove statement that
𝑀 > 0. For this, we first define the auxiliary function 𝑔 for every 𝑥 ∈ 𝑋 as

𝑔(𝑥) ≔ max(1 − 𝑑 (𝑥, 𝐾𝐧) , 0)

Note first that 𝑀 ⋅ 𝑔 − 𝑓 ≥ 0. We know that due to the dichotomy, at least
one of 𝑓(𝑥) = 0 or 𝑥 ∈ 𝐾𝐧 is true. In the first case, we have that

𝑀 ⋅ 𝑔(𝑥) − 𝑓(𝑥) = 𝑀 ⋅ max(1 − 𝑑 (𝑥, 𝐾𝐧) , 0) − 𝑓(𝑥)⏟
=0

= 𝑀 ⋅ max(1 − 𝑑 (𝑥, 𝐾𝐧) , 0) ≥ 0

and in the second case we have that

𝑀 ⋅ 𝑔(𝑥) − 𝑓(𝑥) = 𝑀 ⋅ max(1 − 𝑑 (𝑥, 𝐾𝐧)⏟
=0

, 0) − 𝑓(𝑥) = 𝑀 − 𝑓(𝑥) ≥ 0

Due to the monotonicity of the integral, we now have that

0 ≤ ∫(𝑀 ⋅ 𝑔 − 𝑓)𝑑𝜇 = 𝑀 ∫ 𝑔𝑑𝜇 − ∫ 𝑓𝑑𝜇
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which is equivalent to
∫ 𝑓𝑑𝜇 ≤ 𝑀 ∫ 𝑔𝑑𝜇

Since both ∫ 𝑓𝑑𝜇 > 0 by assumption and ∫ 𝑔𝑑𝜇 ≥ 0, it follows that 𝑀 > 0 as
required. This gives us some 𝑥 ∈ 𝑋 such that 𝑓(𝑥) > 0.

Lemma 7. Let (𝑋, 𝑑) be a locally compact metric space with modulus of
local compactness (𝑥0, (𝐴𝑛, 𝜄𝐴𝑛

)𝑛∈ℕ, 𝜿), 𝑓 ∈ 𝐶supp(𝑋) and (𝑓𝑛)𝑛∈ℕ a sequence
in 𝐶supp(𝑋) such that 𝑓𝑛 ≥ 0 as well as ∑𝑛∈ℕ ∫ 𝑓𝑛𝑑𝜇 exists and

∑
𝑛∈ℕ

∫ 𝑓𝑛𝑑𝜇 < ∫ 𝑓𝑑𝜇.

Then we can construct 𝑥 ∈ 𝑋 such that for all 𝑚 ∈ ℕ we have that
𝑚

∑
𝑛=1

𝑓𝑛(𝑥) ≤ 𝑓(𝑥).

Proof. By iterated application of Lemma 5 we define the sequence (𝑔𝑛)𝑛∈ℕ in
𝐶supp(𝑋) recursively as follows:
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(a) 𝑔0 ≔ 𝑓

(b) Let 𝑚 ∈ ℕ and assume 𝑔𝑘 ∈ 𝐶supp(𝑋) has already been defined for all
𝑘 ∈ ℕ, 𝑘 < 𝑚. Then by Lemma 5 we can construct 𝑔𝑚 ∈ 𝐶supp(𝑋) such
that 𝑔𝑚 has a compact support 𝐾𝑚 where diam(𝐾𝑚) < 𝑚−1 and

∑
𝑛∈ℕ

∫ 𝑓𝑛𝑔1 ⋯ 𝑔𝑚𝑑𝜇 < ∫ 𝑓𝑔1 ⋯ 𝑔𝑚𝑑𝜇

Cutting off the outer series, for every 𝑚 ∈ ℕ we have that
𝑚

∑
𝑛=1

∫ 𝑓𝑛𝑔1 ⋯ 𝑔𝑚 < ∫ 𝑓𝑔1 ⋯ 𝑔𝑚𝑑𝜇

and applying Lemma 6 on the function 𝑓𝑔1 ⋯ 𝑔𝑚 − ∑𝑚
𝑛=1 𝑓𝑛𝑔1 ⋯ 𝑔𝑚 yields

some 𝑥𝑚 ∈ 𝑋 such that

[0 ≤ ]
𝑚

∑
𝑛=1

(𝑓𝑛𝑔1 ⋯ 𝑔𝑚)(𝑥𝑚) < (𝑓𝑔1 ⋯ 𝑔𝑚)(𝑥𝑚)

Because of (𝑓𝑔1 ⋯ 𝑔𝑚)(𝑥𝑚) > 0 for every 𝑚 ∈ ℕ, it holds that for all
𝑘 ∈ ℕ, 𝑘 ≤ 𝑚 we have 𝑔𝑘(𝑥𝑚) > 0 and therefore by induction it follows
that 𝑥𝑚 ∈ 𝐾𝑘. Since diam(𝐾𝑘) < 𝑘−1 for all 𝑘 ∈ ℕ this means that specif-
ically 𝑑 (𝑥𝑚, 𝑥𝑘) < 𝑘−1, i. e. (𝑥𝑚)𝑚 is a Cauchy sequence in 𝑋. Due to the
completeness of 𝑋, (𝑥𝑚)𝑚 converges to some single point 𝑥 ∈ 𝑋.

Due to the fact that for all 𝑚 ∈ ℕ we have that 𝑔𝑚(𝑥𝑚) > 0, it follows that
∑𝑚

𝑛=1 𝑓𝑛(𝑥𝑚) < 𝑓(𝑥𝑚), i. e.

𝑚
∑
𝑛=1

𝑓𝑛(𝑥) ≤ 𝑓(𝑥)

Theorem 4. Let (𝑋, 𝑑) be a locally compact metric space with modulus of
local compactness (𝑥0, (𝐾𝑛, 𝜄𝑛)𝑛∈ℕ, 𝜿) and 𝜇 a positive measure on 𝑋 with
modulus 𝐮. Then there exists a function 𝐜 ∶ 𝐼 × ℱ(ℕ, 𝐶supp(𝑋)) → 𝑋 such
that (𝑋, 𝐶supp(𝑋),Supp(𝑋), 𝜇) is an integration space with modulus (𝐜, 𝐮).

Remark 12. Theorem 4 is the main result of this thesis. It states that the
set Supp(𝑋) of the partial functions indexed by the test functions constitutes
an integration space in a sensible manner.
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Proof. First we note that all the objects fulfill the respective required signa-
tures. We therefore need to show points (i)-(iv) of definition 42.
(i): Let 𝛼, 𝛽 ∈ ℝ and 𝑓, 𝑔 ∈ 𝐶supp(𝑋) with moduli of compact support

𝐧𝑓, 𝐧𝑔 ∈ ℕ respectively. Then max(𝐧𝑓, 𝐧𝑔) is a modulus of compact support
for the function 𝛼𝑓 + 𝛽𝑔, i. e. 𝛼𝑓 + 𝛽𝑔 ∈ 𝐶supp(𝑋). By definition of a positive
measure, 𝜇 is linear, i. e. ∫ 𝛼𝑓 + 𝛽𝑔𝑑𝜇 = 𝛼 ∫ 𝑓𝑑𝜇 + 𝛽 ∫ 𝑔𝑑𝜇. Additionally, 𝐧𝑓
is also the modulus of compact support for the functions |𝑓| as well as 𝑓 ∧ 1,
i. e. |𝑓|, 𝑓 ∧ 1 ∈ 𝐶supp(𝑋).
(iii): By definition we have that ∫ 𝐮𝑑𝜇 = 1.
(iv): Let 𝑓 ∈ 𝐶supp(𝑋) with modulus of compact support 𝐧. For every

𝑟 ∈ ℝ+ we have that 𝐧 is also a modulus of compact support for 𝑓 ∧ 𝑟.
Restricting 𝑓 to the compact set 𝐾𝐧 allows us to use corollary 7 that says
that

sup 𝑓 ∣𝐾𝐧
≔ sup{𝑓(𝜄𝐧(𝑥)) | 𝑥 ∈ 𝐾𝐧}

exists. Since, if 𝑓(𝑥) > 0 for some 𝑥 ∈ 𝑋, then 𝑘 ∈ 𝐾𝐧 such that 𝑥 =
𝜄𝐾𝐧

, we have that sup{𝑓(𝑥) | 𝑥 ∈ 𝑋} = sup 𝑓 ∣𝐾𝐧
. Now consider 𝑘 ≔

𝒦_sup{𝑓(𝑥) | 𝑥 ∈ 𝑋}, i. e. the canonical bound of sup{𝑓(𝑥) | 𝑥 ∈ 𝑋}. Then
we have for all 𝑚 ∈ ℕ such that 𝑚 ≥ 𝑘 that 𝑓 ∧ 𝑚 =ℱ(𝑋) 𝑓, i. e. the sequence
(∫ 𝑓 ∧ 𝑚𝑑𝜇)𝑚∈ℕ becomes constant and therefore lim𝑚→∞ ∫ 𝑓 ∧ 𝑚𝑑𝜇 = ∫ 𝑓𝑑𝜇.

For the other part, let 𝑚 ∈ ℕ and define a function 𝑔 ∶ 𝑋 → ℝ by setting
𝑔(𝑥) ≔ max(1 − 𝑑 (𝑥, 𝐾𝐧) , 0) for 𝑥 ∈ 𝑋. Assume that there is 𝑥 ∈ 𝑋 such
that |𝑓(𝑥)| ∧ 𝑚−1 > 𝑚−1𝑔(𝑥). By observing that in any case we have that
|𝑓(𝑥)| ∧ 𝑚−1 ≤ 𝑚−1, we arrive at the following inequality chain:

𝑚−1 ≥ |𝑓(𝑥)| ∧ 𝑚−1 > 𝑚−1(1 − 𝑑 (𝑥, 𝐾𝐧))

By elementary transformations it is equal to

0 ≤ 𝑚(|𝑓(𝑥)| ∧ 𝑚−1) − 1 < 𝑑 (𝑥, 𝐾𝐧)

and specifically 𝑑 (𝑥, 𝐾𝐧) > 0. Due to the definition of 𝐧 it follows that
𝑓(𝑥) = 0 and therefore |𝑓(𝑥)| ∧ 𝑚−1 = 0 which contradicts our assumption. It
follows that |𝑓| ∧ 𝑚−1 ≤ 𝑚−1𝑔. Due to 𝜇 being a positive measure it follows
that

0 ≤ ∫|𝑓| ∧ 𝑚−1𝑑𝜇 ≤ 𝑚−1 ∫ 𝑔𝑑𝜇
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and particulary

0 ≤ lim
𝑚→∞

∫|𝑓| ∧ 𝑚−1𝑑𝜇 ≤ lim
𝑚→∞

𝑚−1 ∫ 𝑔𝑑𝜇 = 0

i. e. the second part of (iv).
(ii): Let 𝑓 ∈ 𝐶supp(𝑋) and (𝑓𝑛)𝑛∈ℕ a sequence in 𝐶supp(𝑋) such that 𝑓𝑛 ≥ 0

as well as ∑𝑛∈ℕ ∫ 𝑓𝑛𝑑𝜇 exists and

∑
𝑛∈ℕ

∫ 𝑓𝑛𝑑𝜇 < ∫ 𝑓𝑑𝜇.

Additionally consider the previously defined function 𝑔 given by

𝑔(𝑥) ≔ max(1 − 𝑑 (𝑥, 𝐾𝐧) , 0)

and define 𝛼 ≔ 1
2

∫ 𝑓𝑑𝜇−∑𝑛∈ℕ ∫ 𝑓𝑛𝑑𝜇
2+∫ 𝑔𝑑𝜇 such that

∑
𝑛∈ℕ

∫ 𝑓𝑛𝑑𝜇 + 𝛼 ⋅ (2 + ∫ 𝑔𝑑𝜇) < ∫ 𝑓𝑑𝜇.

Then let (𝑁(𝑛))𝑛∈ℕ be a strictly increasing sequence of natural numbers
such that

𝑁(𝑛+1)

∑
𝑘=𝑁(𝑛)

∫ 𝑓𝑛𝑑𝜇 < 2−2𝑛𝛼

which we can since the series converges. Finally, define a new sequence (𝑓 ′
𝑛)𝑛∈ℕ

as follows:

𝑓 ′
𝑛 ≔

⎧{
⎨{⎩

𝛼𝑔 𝑛 = 0
𝑓𝑛′ 𝑛 = 2𝑛′ for some 𝑛′ ∈ ℕ+

2𝑛′ ∑𝑁(𝑛′+1)
𝑘=𝑁(𝑛′) 𝑓𝑘 𝑛 = 2𝑛′ + 1 for some 𝑛′ ∈ ℕ+

i. e. (𝑓 ′
𝑛)𝑛∈ℕ = (𝛼𝑔, 𝑓0, 20 ∑𝑁(1)

𝑘=𝑁(0) 𝑓𝑘, 𝑓1, 21 ∑𝑁(2)
𝑘=𝑁(1) 𝑓𝑘, … ).
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Then we have that

∑
𝑛∈ℕ

∫ 𝑓 ′
𝑛𝑑𝜇 = ∫ 𝛼𝑔𝑑𝜇 + ∑

𝑛∈ℕ
∫ 𝑓𝑛𝑑𝜇 + ∑

𝑛∈ℕ
∫ 2𝑛

𝑁(𝑛+1)

∑
𝑘=𝑁(𝑛)

𝑓𝑘𝑑𝜇

≤ 𝛼 ∫ 𝑔𝑑𝜇 + ∑
𝑛∈ℕ

∫ 𝑓𝑛𝑑𝜇 + ∑
𝑛∈ℕ

2𝑛
∞

∑
𝑘=𝑁(𝑛)

∫ 𝑓𝑘𝑑𝜇

< 𝛼 ∫ 𝑔𝑑𝜇 + ∑
𝑛∈ℕ

𝑓𝑛𝑑𝜇 + ∑
𝑛∈ℕ

2𝑛 ⋅ 2−2𝑛𝛼

= 𝛼 ∫ 𝑔𝑑𝜇 + ∑
𝑛∈ℕ

∫ 𝑓𝑛𝑑𝜇 + 𝛼 ∑
𝑛∈ℕ

2−𝑛

= 𝛼 ∫ 𝑔𝑑𝜇 + ∑
𝑛∈ℕ

∫ 𝑓𝑛𝑑𝜇 + 2𝛼

= ∑
𝑛∈ℕ

∫ 𝑓𝑛𝑑𝜇 + 𝛼 ⋅ (2 + ∫ 𝑔𝑑𝜇)

< ∫ 𝑓𝑑𝜇

Now we can apply Lemma 7 and construct a point 𝑥 ∈ 𝐾 such that for
every 𝑚 ∈ ℕ

𝛼𝑔(𝑥) +
𝑚

∑
𝑛=0

𝑓𝑛(𝑥) +
𝑚

∑
𝑛=0

2𝑛
𝑁(𝑛+1)

∑
𝑘=𝑁(𝑛)

𝑓𝑘(𝑥) ≤ 𝑓(𝑥)

i. e. in particular 𝛼𝑔(𝑥) + ∑𝑚
𝑛=0 𝑓𝑛(𝑥) + 2𝑚 ∑𝑁(𝑚+1)

𝑘=𝑁(𝑚) 𝑓𝑘(𝑥) ≤ 𝑓(𝑥). It follows

that ∑𝑁(𝑚+1)
𝑘=𝑁(𝑚) 𝑓𝑘(𝑥) ≤ 2−𝑚𝑓(𝑥), i. e. ∑𝑛∈ℕ 𝑓𝑛(𝑥) converges and further that

𝛼𝑔(𝑥) + ∑𝑛∈ℕ 𝑓𝑛(𝑥) ≤ 𝑓(𝑥). Since 𝑥 ∈ 𝐾, we have that 𝛼𝑔(𝑥) = 𝛼 > 0 and
therefore

∑
𝑛∈ℕ

𝑓𝑛(𝑥) < 𝑓(𝑥)

as desired. Thus we define 𝐜(𝑓, (𝑓𝑛)𝑛) ≔ 𝑥.
Together we have that (𝑋, 𝐶supp(𝑋),Supp(𝑋), 𝜇) is an integration space

with modulus (𝐜, 𝐮).

48



Conclusion

Within his work, Bishop has established that developing a reasonably expan-
sive theory of integration within the framework of constructive mathematics
is entirely feasible. However, its use of impredicative statements and defini-
tions is somewhat problematic. Now, in the course of this thesis, we have
demonstrated that Bishop’s theory can be amended in a way that removes
this impredicativity.

Unfortunately the work of creating a constructive and predicative integration
theory is not yet finished—in fact, we are merely at the beginning. Building
upon the notions and propositions contained in this thesis, further research
has to be conducted on how to remove impredicativity from the rest of the
integration and measure theory of Bishop and Bridges [1]. This includes the
introduction of the notions of detachable and complemented subsets and the
application of our main theorem, that states that the test functions constitute
an integration space in a sensible manner. It should also be investigated to
what extent choice can be avoided through the explicit use of moduli.

Furthermore, it would be interesting to see more work done on the definition
of local compactness of Mandelkern [5], particularly on the relation and
differences to the original definition of Bishop and Bridges [1] and the one
used in this thesis. Additional investigation should also be done into how one
would be able to develop a theory of integration from this definition.
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